《梯形面积》说课稿
作为一名辛苦耕耘的教育工作者,可能需要进行说课稿编写工作,说课稿有助于学生理解并掌握系统的知识。那么说课稿应该怎么写才合适呢?以下是小编整理的《梯形面积》说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
《梯形面积》说课稿1
一、说教材
梯形的面积一课是在学生认识了梯形的特征,掌握了长方形、正方形、平行四边形和三角形面积计算公式的基础上进行教学的,因此教材没有安排数方格的方法求梯形的面积,而是直接给出一个梯形,引导学生思考,怎样仿照求平行四边形、三角形面积的方法,把梯形转化成我们已经学过的图形来计算它的面积,让学生在主动参与探索的过程中,发现并掌握梯形的面积计算方法,让学生在教学的再创造过程中实现对新知识的意义构建,解决新问题,获得新发展。
课标要求学生在学习梯形的面积时,要在已有知识的基础上,经历探索梯形面积计算方法的过程,并能运用面积计算公式解决生活中一些简单问题,并在探索图形面积的计算方法中,获得探索学习的经验。
二、说学情
学生在学习“平行四边形的面积计算”和“三角形的面积计算”后,所掌握的不仅仅是面积计算的公式,在知识学习过程中,学生更获得了数学的转化思想,教师的重要任务在于通过各种方法手段让学生有效的实施正迁移。设计本课时,教师突破了传统教学中只进行“拼合转化”的思想束缚,大胆的让学生合作学习、动手转化、作品展示,结合电教媒体的使用,理清学生的思路,通过学生的自主活动,完成知识的构建。
三、根据以上分析我拟定本节课教学目标及重难点如下:
(一)教学目标
1、在实际情境中,认识计算梯形面积的必要性。
2、让学生通过动手操作、实验观察等方法,自主探索并掌握梯形的面积公式,经历推导梯形面积公式的过程。
3、让学生会用面积公式计算梯形的面积,并能解决一些简单的实际问题。
4、体会数学与生活的联系,培养学生热爱数学的兴趣。
(二)教学重难点
本节课教学重点是在自主探索中,经历推导梯形面积公式的过程,难点是能运用梯形的面积计算公式解决相关的实际问题。
四、说教学流程
(一)复习旧知、导入新课
本节课教学中,我首先出示了课中主题图这一生活情境,让学生感受计算梯形面积的必要性,接着出示平行四边形,三角形面积公式的推导转化过程,让学生通过复习,从而唤起学生的已有经验,为沟通新旧知识的联系,奠定基础。
(二)动手实践、合作探究
“转化”是数学学习和研究的一种重要思想方法,在这一单元的学习中一直发挥着积极的作用。所以本节课继续以图形内在联系为线索,以未知转化为已知的基本方法开展学习。有了平行四边形和三角形面积计算公式的推导基础,梯形面积计算公式的探究,学生自然会想到要把梯形转化为学过的图形进行推导。具体怎样转化,转化成什么图形,全部放手让学生自主探索。学生拿出准备好的梯形分小组进行操作活动,他们借助前面学习平行四边形、三角形面积公式的“转化图形、寻找等量、推导公式”三步曲的学习方法,通过小组合作共同探究出梯形的面积公式,亲身经历了知识的形成过程,弄清知识的来龙去脉,不仅自主学习能力得到了培养,又感受到了成功的喜悦。
运用转化的方法推导梯形的面积计算公式,可以有多种途径和方法,课堂上我并没有把学生的思维限制在一种固定或简单的途径或方法上,而是鼓励学生从不同的角度去思考探索梯形的面积计算公式,并配以白板和课件的直观演示酌情介绍了几种不同的推导方法,拓宽了学生的思路。
(三)运用新知、解决问题
通过不同的练习,巩固拓展已学知识,让学生再次体验梯形面积公式在生活中的运用及重要性,感悟数学与生活的联系,培养了学生灵活运用所学知识解决实际问题的能力。
(四)课堂回顾,归纳总结
学生对所学知识进行系统化、条理化整理的过程,不仅促进学生掌握了知识、领悟了方法,还培养了学生的语言表达能力,归纳概括能力,关注了学生情感的体验。
《梯形面积》说课稿2
【教材分析】
1、教学内容:五年制小学数学第七册《梯形面积的计算》。
2、教材简析:梯形面积的计算是在学习了平行四边形、三角形面积的基础上教学的。学生学好这部分内容,既发展了空间观念,又培养了运用旧知识解决新问题的能力,更为今后学习几何知识奠定了基础。
【教学目标】
知识教学:掌握梯形面积公式,理解推导过程。
能力训练:通过操作、观察、比较,发展学生的空间观念,培养学生的创新意识和实践能力。
素质培养:渗透旋转和平移的思想,让学生在拼剪中感受数学知识的内在美,培养团队合作意识。
【教学重点难点】
教学重点:理解梯形面积公式,掌握计算方法。
教学难点:通过图形的转化推导面积公式。
【教学准备】
教具准备:电教多媒体、实物投影。
学具准备:各种梯形卡片若干、小刀、胶水。
【教学教法】
这节课主要本着“以学生发展为本,以活动为主线,以创新为主导”的思想。主要教法有引导法、直观演示法和讨论法等。在教学策略上,把梯形面积公式的推导化为学生“拼、剪、画、说“的活动,通过小组活动、操作实践等手段借助多媒体的演示,帮助学生理解知识点,使抽象的知识变得直观形象,给学生一个创新的空间。变“讲堂”为“学堂”,从而从根本上打破传统的教学方法,建构一种新型的现代教育模式。
【教学学法】
在教学中注重指导学生的自主学习,把学习的钥匙交给学生,在传授知识的同时,授以科学的思维方法,这节课学生主要采用以下两种学法进行探究学习:
1、小组合作学习的方法,运用这种方法,便于培养学生的参与合作精神。例如,让学生寻求梯形面积的计算方法,看谁想出的办法多,学生在组内合作交流,互相可以得到启发,共同理清思路。
2、迁移尝试法:在教学过程中引导学生模仿平行四边形、三角形的面积公式的推导,运用转化的方法推出梯形面积计算公式。学生在模仿、迁移、推导的过程中,学会学习、学会思考,真正成为学习的主人。
【教学程序】
本节课属于几何知识中公式推导教学。根据内容特点和学生学习数学的心理特点,教学程序可分为五大环节:
第一环节:创设情境导入。
联系学生熟悉的例子,创设一个能激起学生认知冲突的问题情境,让学生计算一个上底3厘米、下底5厘米,高4厘米的梯形彩纸的面积。这时大多数学生会束手无策,就在学生产生认知冲突时导入课题:同学们,这就是我们今天要研究的内容“梯形面积的计算”。精心设计好这个开端,很自然地把学生带入新知的学习环节。这样既激发了学生探索新知的欲望,又使学生明确了探索目标与方向。
第二环节:搭建脚手架,激活思维。
这一环节主要是针对学生求梯形面积时遇到的困难而设计的。这样一来就为学生解决新问题做了认知上的铺垫。这一环节共分两步进行:第一步操作铺垫;第二步再现旧知。
第三环节:自主探索,合作交流。
建构主义学说认为:学习是学习者主体主动建构的过程。在这一环节的学习中,要充分相信学生,并为之提供主动建构的过程,从而使“有意义学习”的实现成为可能。这一环节也分两步进行:第一步,让学生拿出课前准备好的各种梯形,鼓励学生操作,寻找梯形面积的计算方法,让学生拼拼剪剪中实现转换,比一比哪一组同学想出的办法多。第二步,交流验证是学生在小组间相互交流,展示不同的思考方法。除了这些方法外,可能还有其它的方法,那么学生汇报时要充分肯定他们的推理与计算。学生在交流与展示中相互得到启发,这样学生就经历了一个学习再创造的过程,使学生创新思维得到更好的发展,也就可以收到“保底不封顶”的效果。
第四环节:点拨归纳、解决问题。
学生经过自主探索合作交流,有的悟出了梯形面积公式,但不一定讲得清道理,有的学生在公式的理解上存在障碍,基本处于“悱”、“愤”状态。这时应抓住时机,引导学生梳理思路找出最简便的解题方法,接着就重点演示两个完全一样的梯形拼成一个平行四边形,让学生观察原梯形和所拼图形之间有什么关系?师生共同推导出梯形面积的计算公式,并用字母表示出来,这时候计算公式的得出,也就水到渠成了。接着让学生看书质疑,理解公式。最后进行课堂小结:同学们,通过这节课的学习,你有什么收获?你还想出什么问题,这样学生头脑中形成一个完整的知识体系。
第五环节:综合练习、拓展延伸。
练习是理解知识、掌握知识、形成技能的基本途径,为使不同层次的学生都得到不同程度的发展,我设计了以下几个层次的练习:
1、自命题练习:学生自己出题自己解答,并进行自评互评。这样摆脱了由老师出题,学生依次解答,一贯做法。老师只在关键的地方加以点拨、引导。这样设计,学生不但感兴趣,而且这个出题与解题的过程,更加深了学生对知识的理解与巩固。
2、巩固练习:先让学生以抢答形式练习,直接用公式求面积,再让学生以小组为单位,完成一道实践与计算相结合的综合性题目。
3、对学有余力的学生设计一道思考题,供他们解答。这些练习紧扣教学重点,既有层次,又有梯度,提高了解决问题的能力,增强了学生学好知识的自信心。
《梯形面积》说课稿3
今天我说课的内容是:
一、说教材
1、说教材的地位和作用
《梯形的面积》是人教版五年级数学上册第五单元的一个课时。这节课,是在学生认识了梯形特征,经历、探索了平行四边形、三角形的面积计算的推导方法,并形成了一定空间观念的基础上进行教学的。因此,教材中没有安排数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。让学生在自主参与探索的过程中,发现并掌握梯形的面积计算的方法,让学生在数学的再创造过程中实现对新知的意义建构,解决新问题,获得新发展。
2、说教学目标、重点、难点
根据本节课的教学内容和五年级学生的认知规律,本课的教学目标确定为:
知识与技能:在实际情境中,认识计算梯形面积的必要性。能运用梯形面积的计算公式,解决相应的实际问题。
过程与方法:培养学生学会发现知识之间的规律,加强学生动手操作能力和观察能力。在自主探索和小组合作探索的活动中,经历推导梯形面积公式的过程。
情感态度价值观:在探索梯形面积计算方法的过程中,获得探索问题成功的体验。
教学重点: 理解并掌握梯形面积计算公式,正确计算梯形的面积。
教学难点: 梯形面积计算方法的推导过程。
二、说学生
由于学生学习了平行四边形、三角形的面积计算方法,初步理解了平移、旋转的思想,具备了初步的归纳、对比和推理的数学活动经验,对梯形面积公式的推导,有一定的启发。学生受思维定势的影响,很容易就会利用两个完全相同的梯形转化成平行四边形的面积推导出梯形的面积公式,而用一个梯形推导出梯形的面积公式对有的学生来说,会有一定的难度。另外,由于班额人数较多,因此在合作中给教师的指导带来了一定的困难。
三、说教学策略
根据教学的三维目标,结合几何形体教学的特点,我采用以下的教学方法:
1、知识的迁移法:在教学活动中,充分尊重学生已有的知识与生活经验,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。
2、采用“小组活动,合作探究的教学方法”。
在教学中,组织学生开展探索性的数学活动,注重知识发现和探索过程;体现变知识的接受过程为科学的探究过程,利用学生的合作探究能力,引导学生自主学习。
3、采用直观教学法。
在教学中运用直观演示,来突出教学重点,从而启发学生思维,帮助学生突破学习的难点。
通过本节课的教学,使学生学会以旧引新,学法迁移进行学习,培养学生的自学能力和探索精神,提高学生自主发现问题,分析问题,解决问题的能力。
四、说教学实施过程
基于上述认识与理解,我对梯形的面积教学流程作了如下设计:
第一环节:创设情境,导入新课
上课开始,根据我班现有的实际情况设计了这样的情境:“我们班同学喜欢听故事吗?”学生上五年级以来,最感兴趣的就是爱听故事。于是,我通过讲曹冲称象的故事,让学生悟出转化法来解决梯形的面积。由此,很自然的导入本节课。让学生认识到求梯形面积的必要性,同时也激发起了学生积极的学习情感。
第二环节:动手操作,探究新知
新课程标准强调:“教学要从学生已有的经验出发,让学生亲身经历知识的学习过程”。所以,在教学中,我设计了让学生自己去探求推导梯形面积的计算方法的活动。因为学生学过了三角形面积的推导,所以很容易就会想到用两个完全相同的梯形拼成平行四边形推导面积公式的途径。最后,再用课件直观展示出梯形面积的推导方法,加深学生的理解。
第三环节:合作探究,发散验证
在操作探究的基础上,我引导学生自己总结出了梯形面积的计算公式。然后,我向学生提问:“如果我们手中只有一个一般的梯形,你们能不能自己动脑想出别的方法验证我们刚才的发现呢?”以此来鼓励学生采用多种方法进行验证刚才的结论。
这样的设计,体现了让“学生自主探究、自主学习”的教学理念。通过展示学生们个性化的研究思路与成果,激发他们成功的学习体验和进一步深入研究的积极愿望。同时也达到 既突出“重点”,又化解“难点”的目的。
第四环节:应用公式,解决问题
数学知识来源于生活又服务于生活,要使学生真正学好数学,形成数学技能,必须密切联系学生的生活实际,使其体验数学在生活中的广泛应用。所以,围绕这个目的,我设计了下面的一些练习:
第一题:是判断题,加深学生对推导公式的印象。
第二题:基本题,例3,基本题,课本中的“做一做”。目的在于让学生准确使用梯形的面积计算公式。
第三题:是书中89页做一做,能发现了什么?目的在于让学生掌握梯形的面积计算公式。
第四题:课本90页的第1题,给学生空间想象能力及动手操作能力。
第五题:是一道变式练习,目的在于培养学生灵活运用公式的能力。
练习设计由浅入深,有层次性,让学生感受到通过努力而获得成功的喜悦。
第五环节:课堂回顾,总结收获
成功和体验是学生情感发展的基础,师生在交流中共享学习的快乐。
《梯形面积》说课稿4
我将分以下五个部分进行说课
一、对本课的理解和思考
二、对教学目标和重难点的把握
三、对教学设计的思考
四、对教法、学法的理解
五、说教学过程
一、对本课的理解和思考
1、对教材的理解
教材地位和作用
梯形面积的计算是是在学生掌握了平行四边形、三角形和梯形的特征以及掌握了长方形、正方形面积计算公式的基础上学习的。本单元知识的学习,能满足解决日常生活和生产中的实际问题的需要,要进一步学习圆的面积和立体图形的表面积的基础。
本单元包括四部分内容:平行四边形的面积、三角形的面积、梯形的面积和组合图形的面积。平行四边形面积计算的教学是以长方形面积计算做基础的,先借助数方格的方法,得到平行四边形的面积,再通过割补、平移,把平行四边形转化成长方形,继而推导出平行四边形的面积公式。三角形的面积计算又是以平行四边形的面积计算做基础的。最后是梯形的面积,既可以转化成三角形,又可以以平行四边形面积的计算做基础。三种基础图形面积计算的联系比较紧密,探索的要求逐步提高,组合图形的面积更是以这些基本图形为基础来计算的
2、对学生的分析
学情分析
(1)学生已有的能力基础:
五年级学生,善于独立思考,乐于合作交流,语言表达能力较强,十分愿意发表独立见解,有较好的学习数学的能力,他们已经掌握了梯形的特征和长方形、平行四边形以及三角形的面积推导过程,知道了拼摆、割补、平移的基本操作方法,也理解了数学的“转化”思想。这些都为本节课的学习奠定了坚实的基础
(2)学生能力的增长点:
学生对梯形面积计算公式的推导有一定的困难。让学生理解由梯形转化成已学过的图形的方法来求面积是一个难点,需要学生在探索活动中,循序渐进地进行操作与观察,从而使学生进一步理解平面图形之间的转换关系,发展空间观念。
(3)困惑点:
学生对梯形面积公式的推导方法是否能呈现多样,即使方法呈现多样,公式推导存在困难。
二、教学目标和重难点
知识与能力:
掌握梯形面积公式,会用公式计算梯形的面积。
过程与方法:
经历小组探索、讨论、归纳等探索梯形面积公式的过程。
情感态度与价值观:
感受梯形面积公式推导过程的探索性和方法的多样化,增强数学学习的信心。
教学重点:理解梯形面积公式,掌握计算方法。
教学难点:通过图形的转化推导梯形面积公式。
三、对教学设计的`思考
1)提出问题、关注学生生活经验。
2)迁移类推、遵循学生认知规律。
3)有放有收、捕捉学生课堂生成。
4)练习梯度、促使学生各有所获。
四、对教法、学法的理解
教学方法:本课采用引导法、尝试教学法、直观演示法、合作探究法等方法。
学习方法:本课运用、知识迁移类推、动手操作、小组合作学习等学习方法。
五、说教学过程
(一)提出问题,情境引入
学生认真观察情景图,了解车窗的形状,
师:车窗的玻璃是什么形状?要做这块玻璃需要多大面积的玻璃?(让学生明确要求梯形的面积。)
师:梯形的面积怎样计算呢?有没有计算公式呢?这节课就一起来研究“梯形面积的计算”
(二)迁移类推、主动探究
1、回顾旧知,深化“转化”思想
师:平行四边形的面积公式是怎样的?它是怎样的推导出来的?三角形的面积公式是怎样的?它是怎样的推导出来的?
学生交流、教师用课件演示推导过程,加深学生对三角形的面积公式的理解和记忆。 )
2、小组合作,归纳推理
指导操作实验,推倒梯形面积公式。
(1)师:梯形的公式能不能借助前面学过的图形面积推导方法来研究呢?
提出小组合作的要求:
(2)反馈交流,学生反馈和课件同步。
(3)导出公式。
①拼成的平行四边形的底与原梯形的两底是什么关系?
②平行四边形的高与原梯形的高又是什么关系?
(4)不同推导方法的交流,教师评价。
3、生活运用、实例解答
①出示例3,学生读题,理解题意。
②拿出大坝模型,认识横截面,使学生明白大坝横截面是一个平面。
③学生试做。
④订正。提问:你是怎样想的?为什么要“除以2”
(三)交互反馈、巩固练习
(1)第89页做一做
(2)第90页的第一题
(3)科技小组制作飞机模型,机翼的平面图是由两个完全相同的梯形组成的,它的面积是多少?
(4)一条新挖的渠道,横截面是梯形(如图)。渠口宽2.8米,渠底宽1.4米,渠深1.2米。它的横截面积多少平方米?
(四)开放延伸、拓展训练
(1)第90页的第3题
(2)第90页的第4题
《梯形面积》说课稿5
各位领导、老师大家好!今天我说课的内容是九年义务教育新人教版小学数学五年级上册第五单元第三节新授课《梯形的面积》。它属于“空间与图形”学习领域的一节课,是多边形面积计算中的一部分。
这一教学内容是在学生经历了平行四边形和三角形面积公示的推导基础上通过转化的方法将梯形转化为已经学过的并且会计算面积的图形。但这节课比前两节课又有所提高,他要求学生用学过的方法推导,但又没有指明具体的方法不再给出具体的方法,从教材中学生的操作可以看出,方法与途径多了,可以用分割的方法,也可以用拼摆的方法;可以转化为三角形进行推导,也可以转化成平行四边形进行推导。值得我们注意的是,联系前面两节的教学内容,不难看出,梯形面积计算公式的推导与平行四边形面积的计算关系最密切,且两者的教学思路也相似,同时梯形面积的教学与三角形面积的教学其公式的基本推导方法相同,除以2的道理也一样,所以它是三角形面积公式推导方法的拓展和延伸,并为今后学习圆面积、立体图形表面积及解答求积应用题打下坚实的基础。
从学情来看,在此之前,学生已经学习了长方形、正方形、平行四边形和梯形的认识以及长方形、正方形、平行四边形的面积,具有了一定探索图形的面积计算公式的经验,但对转化这种数学学习的方法和思想并不熟悉。所以开课时利用课件对平行四边形和三角形面积公式得推导过称的回顾再次向学生渗透数学“转化”的思想。加深对“转化”的数学思想方法的理解和应用,这些都为学生自主研究、探索“梯形的面积”这一新的学习任务创造了必要的条件。
基于以上对教材的理解与分析,针对学生的实际情况,确立如下教学目标与重难点:
教学目标:
⒈运用迁移规律,利用学具进行自主探究,推导出梯形的面积计算公式;正确运用所掌握的梯形面积计算公式解决实际问题。
⒉培养运用“转化”的思想解决实际问题的能力、迁移类推能力和抽象概括能力,发展空间观念。
⒊感受知识来源于实践,认识事物之间相互联系,可以互相转化的。
⒋通过合作学习,培养团结协作和勇于创新的精神。在解决问题的过程中,培养认真、严谨的学习习惯。
教学重点:理解并掌握梯形的面积计算公式。
教学难点:理解梯形面积计算公式的推导过程。
学生用到的学具有:自制的两个梯形图片、剪刀、直尺、教科书等。
我用到的教具:梯形图片、剪刀、实物展台、多媒体课件等。
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形面积的计算》一课,为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。因次我将教学流程预设为四个环节:
一、以回顾旧知为导入,明确新知任务及探究方法。
我引导学生回顾平行四边形和三角形面积公示的推导过程,渗透转化的数学思想。引导学生明白在解决新问题时学会用转化的方法,从而打开学生探究梯形面积公式的思路,为学生在后边的动手操作过程中,借助不同的旧知解决新问题做好铺垫。
二、自主探究合作交流,探究新知。
在推导梯形面积计算公式时,想让学生自己利用手中学具将梯形转化成学过的图形。在让学生交流自己的转化成果。并进行全班展示。并让学生观察找出转化后的图形与原来梯形之间的联系,然后再选取其中的一到三种进行推导验证,使学生明白不论用哪一种转化后的图形进行推导最终都会归结为一种,就是上底加下底的和乘高除以2.通过两个层次的实践活动,让学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。
三、推导验证,完善建构。
四、巩固练习。加深记忆。
五、总结完善,自我反思。
在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在动手操作以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。
但也存在一些不足之处,例如:在推导验证的过程中,学生表达得不够清晰,对于推导的过程理解得还不够透彻。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我需要反思的问题。
《梯形面积》说课稿6
一、教材:
1、说课内容:五年制小学课本第八册第三章第3节。[数学网更多小学数学说课稿]
2、教材简析:梯形的面积计算是在梯的认识基础上进行教学的是以后学习图形面积计算的基础。
3、教学目标:
(1)理解的基础上掌握面积的计算公式,能够正确计算梯形的面积。
(2)通过做图观察比较,发展学生的空间观念,培养学生的分析、综合、抽象、概括能力。
4、教学重难点:
重点:梯形面积公式。
难点:熟练正确的进行应用。
5、教具:课件、小黑板
学具:两个三角形,两个梯形。
二、教学:
在这堂课中设计过程中,我采用目标教学,在本课教学中,我采用以下教学方法。
1、讲解法:在本课教学中,梯形面积的计算对学生来说是陌生的,我通过学习(三角形及平行四边形的面积推导过程)进行梯形面积计算的教学,提高学生的推导能力。
2、引导发现法:运用边讲边提问的方法组织教学,引导学生层层深入,在积极获取新知。
3、讨论法:由梯形面积的计算,公式是本节课的教学重点,熟练掌握是本节课的难点,为了突出重点突破难点,又使学生能将本节课的新学的知识进行消化吸收,我采用了讨论法、操作法,通过讨论互相学习,体现学生的主体作用,调动了学生的学习兴趣。
4、练习法:通过各种形式分角度练习,不仅激发了学生的学习兴趣,而且保证了知识的巩固和技能的形成。
三、学法:
1、在教师的引导下,运用知识迁移的规律学习知识,让学生初步理解数学知识之间的内在联系。
2、通过教师的启发讲解,提问教会学生观察区分相似事物之间的规律,通过对问题的分析、培养、总结、归纳、概括能力,通过不同形式的练习培养学生的判断力、应变能力。
四、教学过程:
1、复习铺垫,又促迁移:围绕本课的教学目标,我们在教学中安排以下几个过程。
〈一〉、前提测评:
师:用两个完全一样的梯形可以拼成一个什么图形?
生:平行四边形
为了唤起学生的旧知识,促进迁移,上课一开始出示拼一拼和平行四边形面积的计算。
师:平行四边形的面积公式是什么?
生:平行四边形的面积=底×高
计算平行四边形的面积(出示课件1)
师:看,老师把平行四边形分成两个完全一样的什么图形?
生:分成两个完全一样的梯形。
师:今天这节课我们就来学习梯形面积的计算。
板书:梯形的面积
[设计意图]这样安排教学,既复习了旧知识,又为学新知识打下了基础。
2、引导发现,归纳总结。
(1)通过学生自己动手拼一拼,和学生观察知道一个平行四边形可以分成两个完全一样的梯形,这样把梯形面积的计算转化成以学过的平行四边形面积的计算。
(2)教师让学生观察课件和自己拼的平行四边形,学生展开讨论交流:两个完全一样的梯形面积与拼成的平行四边形的面积有什么关系?两个完全一样的梯形的上底、下底和高与拼成平行四边形的底和高有什么关系?总结梯形面积公式。学生回答师板书:梯形的面积=(上底+下底)×高÷2,教师说明如果用a表示梯形上底,b表示下底,h表示高,那么字母公式应怎样写?学生回答,师出示例题理解横截面积,指名说出题目告诉我们什么了?你是怎样想的?学生回答集体练习订正。
(3)为了巩固梯形面积的计算,做“做一做”,学生练习集体订正,这样有利于学生熟练掌握公式。
[设计意图]本环节教学目的在于学生通过讨论交流和利用以前学过的知识总结梯形面积的公式,从而在理解梯形公式的推导过程的基础上进行熟记,正确求出面积。
3、多种形式练习。
1、做一做:(课件)
2、下面是河堤坝的横截面图,它的面积是多少?(课件)
3、求下面梯形的面积:(只列算式,不计算)
(1)上底是1.8分米,下底是4.6分米,高是3分米。
(2)上底是32厘米,下底是47厘米,高是14厘米。
(3)上底是4.2分米,下底是3.6分米,高是5分米。
(4)上底是18米,下底是26米,高是8.4米。
4、选择:(将正确的答案的序号填在括号里)
(1)求下图的面积,正确的算式是( )(课件)
A、(13+15)×7÷2
B、(13+15)×4÷2
C、(4+7)×13÷2
D、(4+7)×15÷2
(2)一块梯形草地,上底为75米,比下底短20米,高为25米,计算它的面积的正确算式是( )
A、(75+20)×25÷2
B、(75-25+75)×25÷2
C、(75+25+75)×20÷2
D、(75+20+75)×25÷2
5、梯形的面积是120cm2,如果高是6cm,那么它的上底、下底之和是( )cm。
6、梯形的面积是70dm2,上底为8dm,高为4dm,则梯形的下底是( )dm。
7、求下面梯形的面积:(学生自己讨论)(课件)
[设计意图]本环节要达到的教学目的:(1)熟记梯形面积计算公式,并能进行实际应用。(2)养成认真做题,正确书写作图的良好习惯。
《梯形面积》说课稿7
一、基于课程标准
本节课的内容标准是:能利用方格纸或割补等方法探索并掌握梯形的面积计算公式。
课程标准对本节课的学段目标规定为:
1、经历探索物体与图形的位置关系,再认梯形,进一步发展空间观念。
2、能探索出解决梯形面积的有效办法。
3、体验数学与日常生活的密切相关。
二、基于教材
《梯形面积》的教学是在学生已经掌握并能灵活运用平行四边形和三角形面积计算公式以及理解梯形特征的基础上进行教学的。学好这部分内容,既发展了学生空间观念,又培养了学生运用知识解决问题的能力,为后面学习组合图形的面积打好了基础。因此我把掌握梯形面积的计算公式,并会用公式解决实际问题确定为本节课的教学重点。
本节课教材第88页,由车窗玻璃抽象出梯形,唤起学生的生活经验。接着88页中间,通过不同的剪拼的方法,自己探索出梯形的面积计算公式。教材89页的例3是对梯形面积公式的应用,结合生活实际解决问题。89页的“做一做”是求车窗玻璃的面积,和本节课的导课前后呼应,更贴近生活。
三、基于学生经验
本节课的教学对象是五年级学生,学生已经了解了梯形的特征,理解了平行四边形、三角形面积公式的推导过程,并初步感受到“转化”的数学思想。但是,本节课不仅让学生利用一种方法推导出梯形面积公式,而且还要感受梯形面积公式推导方法的多样化,这对于学生来说有一定困难,所以理解梯形面积公式推导方法的多样化就成了本节课所要突破的难点。
四、叙写学习目标
1、用推导三角形面积公式的方法,通过自主探究,能推导出梯形的面积公式,并能正确计算梯形的面积。
2、应用已有的知识经验和方法,培养解决实际问题的能力。
3、在探究新知的过程中,通过合作、观察、比较,体会转化方法的价值,发展自己的空间观念和初步的推理能力。
突出重点、突破难点的方法:
在学生的展示和教师的讲解中运用课件,把梯形面积公式的推导过程生动、形象、直观的呈现给学生,有利于学生对公式各种推导方法的理解,从而突破教学难点。
五、评价设计
本节课我采用的评价方式是交流性评价、表现性评价和应用式评价。根据确定的学习目标,力求评价的可操作性和可检测性。
针对目标1,我采用交流式评价和应用式评价,评价任务是推导梯形的面积公式和会求梯形的面积。
针对目标2,我采用交流式评价和表现式评价,评价任务是利用梯形的面积公式解决生活中的实际问题。
针对目标3,我采用交流式评价和表现式评价,评价任务是渗透转化、迁移的数学思想方法。
下面我就结合我的课堂教学实践将本课的教学媒体应用以及效果向大家做一个简要的介绍。
六、教学流程
(一)复习旧知,导入新课。
上课伊始(演示课件),我先引导学生回忆平行四边形和三角形面积公式以及它们的推导过程,使学生再次感受转化的数学思考方法,为新知学习及知识的迁移作好充分的铺垫。然后利用汽车窗户的形状抽象出梯形,导入新课。
(二)猜想验证,探究新知。
在本环节的教学中应用探究式的学习方式,先让学生大胆猜想梯形可以转化成以前我们学过的什么图形,然后再动手验证自己的猜想,最后把自己的推导方法演示给大家。学生推导的方法是具有局限性,这时教师用课件将多样化的推导方法演示出来:用两个完全一样的梯形拼成一个平行四边形,这是大部分同学都用到的方法,课件的演示使学生直观的看到平行四边形面积等于两个梯形的面积,平行四边形的底就是梯形的上底加下底,高就是梯形的高,因此就推导出了梯形的面积计算公式。还有一些方法在课堂上出现的较少,用一个梯形通过剪拼的方法,把梯形转化成三角形,这个三角形的面积就等于梯形的面积;还可以先找到两腰的中点,连一条线,沿线剪开,通过翻转,把它转化成平行四边形等等。课件图文并茂的演示,使学生清楚的看到转化后的图形和梯形之间的关系,弥补了学具展示不够规范、清楚的不足;避免了讲解抽象,学生难以形成清晰、完整表象的弊端。从而拓展了学生的思路,激发了学习兴趣,也突破了本节课的教学难点。
(三)应用公式,巩固新知。
习题分为三个层次,一是基础练习,利用公式直接求出梯形的面积。二是利用所学公式解决实际问题,求水渠、河坝的横截面积,机翼的面积,圆木总根数,这些习题离学生的生活较远,课件真实的再现生活情景,从而帮助学生弄懂了题意。三是拓展练习,寻找合适的条件,求出图形中梯形的面积。
《梯形面积》说课稿8
一、说教材。
1、说课内容:
九年义务教育六年制第九册第三单元第3小节《梯形面积的计算》。这一课内容是在学生学会计算平行四边形、三角形面积的基础上进行教学的。
2、教学目标:
认知目标:使学生理解梯形面积计算公式,能正确地计算梯形面积。
能力目标:通过操作观察比较发展学生的空间观念,学生经历梯形面积公式的探索过程,进一步感受转化的数学思想,进一步培养学生的观察、分析、概括、推理和解决实际问题的能力,
情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。
3、教学重、难点:
(1)重点:理解梯形面积计算公式的推导,并能正确运用梯形面积的计算公式进行计算。
(2)难点:运用不同的方法推导出梯形的面积公式。
二、说教法与学法。
1、根据几何图形教学的特点,我采用了以下几点教法:
①充分发挥学生的主体性,让学生通过课堂讨论、相互合作、实际操作等方式,自主探索、自主学习,使学生在完成任务的过程中不知不觉实现知识的迁移和融合;
②有目的地运用知识迁移的规律,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。
2、通过本节课的教学,使学生掌握一些基本的学法:
①让学生学会以旧引新,掌握并运用知识迁移进行学习的方法;
②让学生学会自主发现问题,分析问题,解决问题的方法。
三、说教学过程。
新课程的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程,激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索、解决数学问题。所以本课在教学思路上淡化教师教的痕迹,突出学生学的过程。从而充分体现了学生是学习的主人,教师只是学生学习的组织者、引导者与合作者。根据本课教学内容、学生的实际认知水平和新课程理念的指导下,本课的教学设计如下:
(一)复习旧知引出新课。
1、回忆已经认识的平面图形。说说平形四边形和三角形面积的计算公式,并回想三角形面积的推导过程。
2、谈话引出课题。
关于梯形你们想知道什么?(让学生说说自己的想法)
(这个环节的设计主要是通过复习提问,从而唤起学生的回忆,为沟通新旧知识的联系,奠定基础。也就是为梯形面积的推导做好铺垫,并在学习新课之前激发学生的学习兴趣,让学生怀着由好奇引起的理智上的震动进入认知活动方面的探索。)
(二)讲授新课。
1、直接切入主题:
对于梯形的面积你们打算怎样找到它的计算方法?(让学生说说自己的思路——把梯形转化为我们学过的图形。)
(这一环节的设置意在激活学生思维,为学生提供创新机会,让学生主动参与,培养他们从小树立探寻知识的意识的良好学习习惯,变“要我学”为“我要学”,也为新课的展开起好前奏。)
2、动手操作前让学生先对梯形进行分类。(可分为:一般梯形、等腰梯形和直角梯形)
3、研究建议:
①选择喜欢的梯形,按照“转化”的思路来研究。
②小组分工合作,考虑不同的转化方法。
4、自主探究,合作学习
学生小组讨论,动手操作。〈教师可有意识地参加到小组中去合作、辅导〉
5、分小组展示汇报,教师深化点拔。
指名说说自己是怎样做的。(边说边演示其过程)
〈两个完全一样的梯形拼成〉〈沿着高切割、拼摆〉〈沿着一条腰的中线切割、拼摆〉…。
(上底+下底)×高÷2(上底+下底)÷2×高(上底+下底)×高÷2……
刚才同学们采用不同的割补、拼摆等方法,将梯形转化成平行四边形、长方形或三角形,发现了它们之间的关系,推导出了不同的面积公式,运用这些公式,我们都可以计算出梯形的面积。只不过,这些公式从形式上看略有不同,我们可以把它们整理成:
梯形的面积=(上底+下底)×高÷2
7、引导学生用字母表示公式:S=(a+b)×h÷2
8、应用公式,尝试计算梯形面积(出示一个基本图形让学生计算)
〈这一环节意在让学生主动参与到数学活动中,亲自去体验,让学生运用自己已有的知识,大胆提出假想,共同探讨,互相验证,更强烈地激发学生探究学习的兴趣,更全面、更方便地揭示新旧知识之间的联系。这种让学生在活动中发现、活动中体验、活动中发散、活动中发展的过程,真真正正地体现了以人的发展为本的教育理念。〉
(三)深化巩固。
1、学习例1
(1)借助教具演示,理解“横截面”的含义。
(2)弄清渠口、渠底、渠深各是梯形的什么?
(3)学生尝试计算横截面积。
〈巩固新知是课堂教学中不可缺少的一个过程,这一环节是为了将学生的学习积极性再次推向高潮,能更好地运用公式计算梯形面积,从中培养了学生解决简单实际问题的能力。〉
(四)总结,反思体验。
回想这节课所学,说说自己有哪些收获?
〈这个环节主要是再次把学习的主动权交给学生,让学生在回忆过程中更清楚地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。〉
(五)课外作业。
练习十八第1——3题。
〈本课的作业体现了“课已终,趣犹存”这一特点。通过作业练习教师能从中得到反馈信息,能了解自己的教学效果,以促进教法的改进。〉
《梯形面积》说课稿9
一、教材分析:
1.关于大纲对几何知识的教学要求。
大纲指出:“几何初步知识的教学要充分利用和创造各种条件,引导学生通过对物体、模型等的观察、测量、拼摆、画图、制作、实验等活动,掌握形体的基本特征和面积、体积的计算方法,并注意在实践中应用,以利于培养初步的空间观念。”
2.关于本课知识在整个学段,在本册教材知识体系中的地位、作用。
本课知识是对前面所学的长方形、正方形、平行四边形和三角形面积知识的发展、巩固和应用,梯形的面积是小学阶段的几何知识的重要内容,为后面的组合图形的求积知识以及进一步学习立体几何知识做好铺垫。学习梯形的面积能够较好地培养学生运用知识解决实际问题的本领,培养学生的思维能力和空间观念,提高学生的数学素质。
3.关于教材的编排意图:
(1)本课教学的知识点是掌握梯形的面积计算公式,运用公式解决实际问题。
(2)本课知识在编排时是按照知识的内在的逻辑顺序和学生的认知顺序进行有序编排的。第九册中的几何初步知识是在学生学过直线和线段、角和垂线、平行线、长方形和正方形的周长和面积的基础上进行讲解的,而梯形的面积计算是在学生学习了梯形的概念、特征及平行四边形、三角形的面积之后进行的,尤其是在学习过三角形的面积之后,学生对用两个完全一样的图形拼成一个新的已学过的图形的计算方法已初步掌握,这为本课学习求梯形面积的思想方法打下了基础,所以教学时一定要放手指导学生根据旧知识自己发现规律,在掌握运用规律的同时发展学生的思维。
4.关于教学目标:
(1)使学生理解梯形面积计算公式的来源,能够运用公式正确地计算梯形的面积,并会计算一些简单的有关梯形面积的实际问题。
(2)初步培养学生的逻辑思维能力和空间观念。
(3)结合教材教育学生,梯形面积计算在实际中有广泛的应用,要认真学好这些知识,以后更好地为社会服务。同时通过梯形面积公式的推导,渗透辩证唯物主义思想,使学生初步懂得用运动、变化的观点来观察事物。
5.关于教学重点:掌握和应用梯形面积的计算公式。
6.关于教学难点:梯形面积计算公式的推导。
二、教学指导思想及教法、学法设计:
(一)教学的指导思想和教改意图
1.充分体现现代素质教育的指导思想,把数学学习过程变为数学活动过程,让学生去主动探索发现数学知识的形成过程,以体现素质教育的精神和数学教学的新观念,改变传统的以传授法为主的教学方法,提高学生的数学素质。
2.充分体现以教师为主导,以学生为主体,以训练为主线的指导思想。让学生在教师有目的地指导下亲自摆一摆、拼一拼、剪一剪、想一想、看一看,通过动手、动口、动脑、动耳,调动学生学习数学的积极性,在整个教学过程中注意训练学生的数学心理素质,加深数学知识的印象,提高学习效率。
3.充分体现练好双基、发展智力、培养能力的指导思想。在练好基础知识,形成基本技能的基础上,适时渗透迁移、转化的数学思想方法和思考策略,对数学知识进行抽象概括、分析综合、比较推理,提高学生的初步逻辑思维能力和空间观念。
(二)教法、学法设计
1.运用电教、实物演示、操作等直观教学手段进行教学。
利用投影仪显示图形的合并、分化过程,将两个完全一样的梯形拼成一个平行四边形,再将一个平行四边形切分成两个完全一样的梯形,培养学生的分析、综合能力。让学生在剪拼图形的实践活动中感知梯形面积的推导过程。
2.巧妙地创设探究问题的情景。
在导入新课时,通过拼图游戏的形式让学生自己去操作发现“将两个完全一样的梯形拼成一个平行四边形”的数学思想方法,在教学过程中把学生的积极性调动起来,投身于数学规律的探索之中。
3.运用迁移规律学习数学新知。
平行四边形和三角形的面积公式知识是学习本课的知识基础,教学中必须充分利用这两个基础知识以及学习三角形面积公式的推导方法,培养学生运用旧知识学习新知识的能力,有效地进行知识的正迁移。
4.运用尝试教学法。
①在探索梯形面积公式时,进行尝试;
②学习例
3进行尝试。
5.运用化归的思维方法学习本课知识。
化归法就是将当前有待解决的问题,经过转化,归结为已经解决或容易解决的问题。本课教学中,先把梯形的面积转化为求平行四边形面积的一半,计算平行四边形面积时,又把平行四边形的底和高转化为梯形的上底和下底和梯形的高,从而推导出梯形面积的计算公式,这样可以紧紧抓住新旧知识的连接点和分化点,使学生形成良好的认知结构。
6.讲练结合,及时进行反馈、矫正。
在新授过程中依*学生的实践活动来探索规律;揭示公式之后,立即学习例3巩固新知;在巩固练习中,设计有坡度的题目检测学生的学习情况,当堂完成,及时反馈,培养学生正确的技能和思维能力。
(三)教具、学具准备:投影仪及若干制好的图片,铅笔刀、粉笔。学生自制若干梯形图片、一个平行四边形图片、一个一平方厘米的小正方形图片、剪刀一把。
三、教学过程:
根据以上的教材分析、教学的指导思想及教学设计,本课按以下几个教学步骤进行教学:
(一)复习铺垫,准备迁移。(约3分钟)
首先投影出示一组平行四边形图形,并复习平行四边形公式,板书:平行四边形面积=底×高。然后投影出示一组三角形图形,并复习它的面积计算公式,板书:三角形的面积=底×高÷2。再投影出示一组包括一般梯形、直角梯形、等腰梯形的各种梯形,提问这是什么图形?怎样判断它们是梯形,指出它们的底和高。这一过程为知识的迁移做好铺垫准备工作。
(二)游戏导入,激趣引新。(约4分钟)
先让学生用准备好的若干梯形纸片拼图,并有目的地选择几个图形在投影中显示,如图:
(岗亭)(轮船)(台灯)(飞机)
然后让学生用准备好的1平方厘米的小正方形图片分别在图中的各种梯形中“铺”方格,提问能否很快准确数出究竟有多少个1平方厘米的小方格。
在此基础上,教师巧妙提问:“能不能把两个完全一样的梯形拼成我们熟悉的图形,来探索梯形面积的计算方法呢?”此时,教师用彩笔将图中两个完全一样的梯形圈起来,学生定会受到三角形面积公式推导方法的启发,积极动手拼图。这一过程可以较好地创设探究问题的情景,使学生的思维处于愤悱状态。
(三)操作思考,探索规律。(约12分钟)
第一步:学生在自己座位上动手操作,将游戏拼图中两个完全一样的梯形拼成一个平行四边形或长方形或正方形。
第二步:将学生操作过程反映在投影上,观察双片投影演示:先显示两个完全一样的梯形;再抽移转动图片,拼成一个平行四边形。然后出示思考题。
①原来是几个什么图形?拼成一个什么图形?
②拼成的平行四边形的底和高与梯形的上、下底及高有什么关系?
提问板书:平行四边形的底=梯形上底+梯形下底
平行四边形的高=梯形的高
③拼成的平行四边形的面积和梯形的面积有什么关系?提问后板书:梯形的面积=平行四边形的面积÷2
第三步是学生再观察教师将一个平行四边形切分成两个完全一样的梯形。然后教师指导学生将自带的平行四边形也剪成两个完全一样的梯形,思考:
①把平行四边形剪开后得到什么图形?
②剪出的梯形上底、下底、高与平行四边形的底、高有什么关系?
③剪出的一个梯形面积与平行四边形面积有什么关系?
第四步是判断推理、得出规律。提问根据板书和操作,你认为梯形面积怎么求:
根据提问板书:
梯形面积=平行四边形面积÷2=底×高÷2(平行四边形)=(上底+下底)×高÷2(梯形)
第五步是将梯形的面积公式与三角形的面积公式加以对比,强调“÷2”的道理。
第六步是看书进一步验证自己推导公式的思考方法是否正确。
这一过程通过“拼”和“剪”的两个实践活动,培养学生的分析、综合能力,并适时进行转化,沟通新旧知识的联系,通过看、听、动、思等活动充分感知公式的推导过程。加深对公式中“上底+下底”和“÷2”的理解。
(四)学习例题,运用规律。(约5分钟)
先提问要求梯形的面积必须知道什么条件,同时告诉学生梯形面积公式在生产实践中有广泛的应用,我们要学好它,为祖国建设服务,然后出示例3,读题后教师用铅笔刀垂直切下一支粉笔,告诉学生小刀切后出现的图形叫做“横截面”,最后让学生独立尝试解题,计算后看书对照。
这一过程是教育学生梯形面积公式在实际中有着广泛的应用,再让学生尝试运用公式进行解题,理解并运用公式。
(五)及时练习,反馈巩固。(设计课堂检测,约8分钟)
第一题是基本题,一个梯形的上底是5米,下底是8米,高是6米,面积是平方米。让学生对照条件将数字带入公式进行计算。
第2题指出拼图游戏中的一个梯形的上、下底和高的长度,口头列式求它的面积,这样照应开头。
第3题是对各种不同类型的、变式的梯形进行口头列式求出面积。
第4题是课本第71页第3题,看图中堤坝中的数字进行列式解答。
第5题是选择填空(如下图)。目的在于让学生正确地找出图中的上底、下底和高,求出面积。
题目是:正确的求积算式①(15+8)×4÷2
是()②(15+8)×10÷2
③(4+10)×15÷2
④(4+10)×8÷2
第6题是设计一条发展智能的提高题给学生练习,培养学生的思维能力。题目是:将三个边长是5厘米的正方形连接横放,后锯掉两边正方形的一个角,形成一个梯形(如图),求梯形的面积。
这一过程设计的目的是通过不同层次的练习,巩固本课所学知识,提高学生运用公式解决问题的能力,发展学生的思维。前面1、2、3题是口头回答,第4题完整解答,第5题进行讨论解答,第6题是智能发展题,一部分学生可以在课外完成。
(六)完成课堂作业,进行课堂总结。(约8分钟)
课堂作业是练习二十第1题三条题目,课后完成练习二十第2题。
课堂总结提问:
1.今天我们学习了什么知识?
2.梯形面积公式中为什么要“除以2”?它与三角形面积公式有什么相同点和不同点?
这一过程设计的目的是让学生独立进行课内作业,当堂完成,检测课堂教学效果,及时娇正。课堂总结加深对所学知识的印象,并进一步理解公式中“除以2”的道理。
附:板书设计:
梯形的面积
平行四边形面积=底×高
平行四边形的底=梯形的上底+梯形的下底
三角形面积=底×高÷2平行四边形的高=梯形的高
梯形面积=平行四边形面积÷2=底×高÷2=(上底+下底)×高÷2
《梯形面积》说课稿10
一、说教材分析
1、课标理念:
课标要求学生在学习梯形的面积时,要在已有认识梯形的底和高的基础上,经历探索梯形面积计算方法的过程,并能运用面积计算公式解决生活中一些简单问题,并在探索图形面积的计算方法中,获得教学探索的经验。
2、单元分析:
本单元教材包括四部分内容:平行四边形的面积、三角形的面积、梯形的面积和组合图形的面积。平行四边形、三角形和梯形面积计算是在学生掌握了这些图形的特征以及长方形、正方形面积计算的基础上学习的,它们是进一步学习圆面积和立体图形表面积的基础。(插图)
3、本节分析:
本课是在学生认识了梯形的特征,并掌握了长方形、正方形、平行四边形和三角形面积的计算,并形成一定空间观念的基础上进行教学的,因此教材没有安排数方格的方法求梯形的面积,而是直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法,把梯形转化成我们已经学过的图形来计算它的面积,让学生在主动参与探索的过程中,发现并掌握梯形的面积计算方法,让学生在教学的再创造过程中实现对新知识的意义构建,解决新问题,获得新发展。
二、说学情分析:
五年级学生,善于独立思考,乐于合作交流,语言表达能力较强,十分愿意发表独立见解,有较好的学习数学的能力,他们已经掌握了梯形的特征和长方形、三角形以及平行四边形面积的计算方法,也学习了图形的旋转平移的方法。这些都为本节课的学习奠定了坚实的基础。
三、说教学目标:
针对上述教材分析及我班学生特点,我制定一下教学目标:
(1)知识目标:通过动手操作活动,引导学生推导梯形面积公式,使学生能够正确地运用公式计算梯形面积。.
(2)能力目标:利用图形的平移和旋转等操作演示,通过合作探索,推导并归纳出公式。
(3)情感态度:培养学生动手操作和逻辑思维能力,同时获得探索问题成功的体验。培养学生的空间观念。
四、说教学重难点:
教学重点:理解梯形面积公式,掌握计算方法。
教学难点:通过图形的转化推导梯形面积公式。
五、说教法、学法:
教学方法:这节课主要本着“以学生发展为本,以活动为主线,以创新为主导”的思想。主要采用引导法、直观演示法、讨论法、合作探究法等方法。
学习方法:本课运用小组合作学习、知识迁移类推等学习方法。
六、说教学流程:
为了实现教学目标,完成新课标赋予的教学任务,我把本课的教学过程分为五个环节:
(一)、第一个环节是:复习旧知、铺垫引导
本节课教学中,我首先出示了课中主题图这一生活情境,让学生感受计算梯形面积的必要性,接着让学生回忆平行四边形,三角形面积公式的推导转化过程:
师:同学们,我们在学习平行四边形和三角形面积的计算时,学到一种非常重要的学习方法,还记得是什么方法吗?(转化)
师:谁来说说平行四边形式三角形的面积是怎样推导出来的?
(根据学生所述,教师电脑演示平行四边形和三角形面积公式的推导过程)
让学生通过复习,从而唤起学生的回忆,为沟通新旧知识的联系,奠定基础,再提出假设,今天我们要学习梯形的面积计算是否也可以将它转化成我们已经学过的图形来进行梯形面积公式的推导呢?
设计意图:通过这一设计来启发学生运用已学知识大胆提出猜测,激发学生探索新知的欲望,又使学生明确了探索目标与方向。
(二)、第二个环节是:合作学习、探索新知
1、首先让学生拿出准备好的梯形分小组进行画、剪、拼、摆等操作活动,让学生通过讨论,自主探索梯形的面积公式:
2、师:同学们已经用不同的方法把梯形转化成了多种图形,并推导出了梯形面积的计算公式,真是了不起!现在让我们共同来欣赏每个小组的成果。
3、有意识地按学生的认知规律一一展示。
4、学生一边展示拼过程,一边介绍方法步骤。
方法一:梯形面积公式的推导方法与三角形面积公式的推导方法相同,运用“拼”的方法,选择两个形状相同、大小相等(完全一样)的梯形可以拼成一个平行四边形,每个梯形的面积就是所拼成的平行四边形面积的一半。梯形上底与下底的和等于拼成的平行四边形的底,梯形的高等于平行四边形的高,由此得出:
梯形的面积=平行四边形的面积÷2
=底×高÷2
=(上底+下底)×高÷2
方法二:选择两个形状相同,大小相等的直角梯形可以拼成一个长方形。
根据长方形的面积计算公式就可以推导出梯形的面积计算公式:
梯形的面积=长方形的面积÷2
=长×宽÷2
=(上底+下底)×高÷2
方法三:把一个梯形分割两个三角形
方法四:把一个梯形剪成两个梯形再拼成一个平行四边形。
5、最后教师针对学生的汇报进行归纳总结得出梯形的面积计算公式为上底与下底之和乘高除以二这一结论,这是本节课的重点及难点。
设计意图:在整个汇报展示过程中,教师把学生也当作教学资源,不但为他们提供一个展示不同方法和想法的平台,还通过实际操作、互动交流。启迪学生深思,引发争论,并碰撞思维火花,让学生在合作交流达到意义的理解和方法的掌握。从而获取这一知识,弄清知识的来龙去脉,既培养了学生能力,又让学生感受到了成功的喜悦。
(三)、第三个环节是:看书质疑、自主学习
1、自学字母公式
师:请同学们把书翻开P88,自学书中的内容。
用s表示梯形的面积、用a表示梯形的上底、用b表示梯形的下底,h表示梯形的高,s=(a+b)×h÷2。
师:同学们刚才看书自学到什么呢?
2、出示例题:我国三峡水电站大坝的横截面的一部分是梯形,求它的面积:学生读题、分析,独立完成。
设计意图:这一部分是通过自学字母表达式、完成例3,培养学生的自学、看书、归纳能力;
(四)、第四个环节是:应用知识、巩固提高
创关检测:课本做一做、练习十七精选习题等
设计意图:通过不同的练习,训练学生,巩固拓展已学知识,让学生再次体验学习,认识到梯形面积公式在生活中的运用及重要性,感悟数学与生活的联系,最后让学生总结概括本节课所学内容,既培养了学生的语言表达、归纳概括的能力,还关注了学生的情感体验。
(五)、第五个环节是:全课总结、畅谈收获
教师通过提问:“今天你有什么收获?”学生总结本课。
设计意图:让学生回忆所学知识的内容,并帮助学生加以梳理,促进学生对梯形面积计算方法的认识,培养学生的数学思维能力。最后鼓励学生用数学的眼光观察生活,用数学的头脑思考问题。
七、说板书设计:
梯形的面积
梯形的面积=(上底+下底)×高÷2
S=(a+b)h÷2
设计意图:这样设计板书,简洁明了,突出了重点,便于学生的识记与运用。
八、说教学反思:
学生通过回顾本堂课的收获,给学生提供了自我感悟、自我评价的时间与空间,有利于培养学生的反思意识。使学生感受到通过努力而获得成功的喜悦,体验到数学的在生活中的实用性。从而使学生的情感、态度和价值观得到了提高。
《梯形面积》说课稿11
一、说教材
1、说课内容:《梯形面积的计算》,这一课内容是在学生学会计算平行四边形、三角形面积的基础上进行教学的。
2、教学目标:
认知目标:使学生理解梯形面积计算公式,能正确计算梯形面积。
能力目标:通过操作观察比较发展学生的空间观念,学生经历梯形面积公式的探索过程,进一步感受转化的数学思想,进一步培养学生的观察、分析、概括、推理和解决实际问题的能力,
情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。
3、教学重、难点:
重点:使学生掌握梯形面积的计算公式。
难点:理解梯形面积计算公式的推导过程。
二、说教法与学法
1、根据几何图形教学的特点,我采用了以下几点教法:
①充分发挥学生的主体性,让学生通过课堂讨论、相互合作、实际操作等方式,自主探索、自主学习,使学生在完成任务的过程中不知不觉实现知识的迁移和融合;
②有目的地运用知识迁移的规律,引导学生进行观察、比较、分析、概括,培养学生的逻辑思维能力。
2、通过本节课的教学,使学生掌握一些基本的学法:
①让学生学会以旧引新,掌握并运用知识迁移进行学习的方法;
②让学生学会自主发现问题,分析问题,解决问题的方法。
三、说教学过程
新课程的基本理念就是要让学生“人人学有价值的数学”,强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程,激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索、解决数学问题。所以本课在教学思路上淡化教师教的痕迹,突出学生学的过程。从而充分体现了学生是学习的主人,教师只是学生学习的组织者、引导者与合作者。根据本课教学内容、学生的实际认知水平和新课程理念的指导下,本课的教学设计如下:
(一)、创设情境,引出问题。
1、课件出示“神七”发射实况
2、谈话引出课题
梯形的面积如何计算?引出学习的内容。〈这个环节的设计主要是通过创设“神七”发射的情境,在学习新课之前激发学生的学习兴趣,让学生怀着由好奇引起的理智上的震动进入认知活动方面的探索。〉
(二)、自主探究,合作交流
1、直接切入主题:对于梯形的面积你们打算怎样找到它的计算方法?(让学生说说自己的思路——把梯形转化为我们学过的图形。)
〈这一环节的设置意在激活学生思维,为学生提供创新机会,让学生主动参与,培养他们从小树立探寻知识的意识的良好学习习惯,变“要我学”为“我要学”,也为新课的展开起好前奏。〉
2、动手操作前让学生先对梯形进行分类。(可分为:一般梯形、等腰梯形和直角梯形)
3、自主探究,合作学习
学生小组讨论,动手操作。〈教师可有意识地参加到小组中去合作、辅导〉
4、分小组展示汇报,教师深化点拔。
教师板演推导过程。
5、引导学生用字母表示公式:s=(a+b)×h÷2
6、应用公式,尝试计算梯形面积(出示一个基本图形让学生计算)
〈这一环节意在通过让学生拼一拼、看一看、想一想、做一做,让学生主动参与到数学活动中,亲自去体验,让学生运用自己已有的知识,大胆提出假想,共同探讨,互相验证,更强烈地激发学生探究学习的兴趣,更全面、更方便地揭示新旧知识之间的联系。这种让学生在活动中发现、活动中体验、活动中发散、活动中发展的过程,真真正正地体现了以人的发展为本的教育理念。〉
(三)、学以致用,解决问题
1、学习例3
(1)、借助教具演示,理解“横截面”的含义。
(2)、弄清渠口、渠底、渠深各是梯形的什么?
(3)、学生尝试计算横截面积。
〈巩固新知是课堂教学中不可缺少的一个过程,这一环节是为了将学生的学习积极性再次推向高潮,能更好地运用公式计算梯形面积,从中培养了学生解决简单实际问题的能力。〉
(四)、应用深化,巩固练习:
1、做一做:请两名学生板演。
2、课件出示练习题。
(通过练习,加深学生对知识的理解,掌握数学知识,形成技能,提高学生应用所学知识解决实际问题的能力和创新能力。)
(五)、总结,反思体验
回想这节课所学,说说自己有哪些收获?学生谈收获,谈学习方法,教师小结强调梯形面积公式的推导过程。
四、板书设计
板书的设计体现了教学内容的系统性和完整性,又做到了重点突出。
《梯形面积》说课稿12
一、说教材
1、教学地位分析
梯形的面积计算是小学数学图形与几何知识领域的一个重要内容,本节课的教学是在掌握平行四边形的面积的基础上进行教学的。孩子已经熟练地掌握平行四边形的面积计算方法,知道两个完全相同的三角形可以拼成一个平行四边形,将三角形的面积转化为一个等底等高的平行四边形的面积来进行计算。利用孩子已有的知识经验,应用转化的策略,将梯形转化为一个平行四边形,从而推导出它的面积计算公式,计算的它的面积。教学中向学生渗透了迁移类推的数学思想和转化策略,提高他们的动手操作能力、创新能力和思维空间能力。为学生将要理解和掌握新知识奠定基础。
2、教材思路分析
按照复习引新,动手操作、推导公式,巩固与应用,建立知识联系顺序组织内容的;例题的讲解突出通过孩子动手操作、讨论,经历知识形成的过程;练习安排了5个层次。
3、确定教学目标
基于对苏教版以上教材的分析,根据新课标的理念和中年级学生的年龄特点、认知规律,我预设了以下教学目标:
(1)知识与技能方面:通过本节课的学习,使孩子能够理解梯形面积计算公式的推导过程,掌握梯形面积的计算方法;使孩子能够熟练地应用梯形的面积计算公式计算梯形的面积,解决生活中的相关问题;
(2)能力培养方面:在公式的推到活动中,培养学生的推理能力、分析能力和实践能力。
(3)情感态度价值观方面:在学习活动中,让学生体会数学与生活的密切联系,形成合作交往意识;感受数学在自己身边,激发学习兴趣;发展数学素养。
4、重、难点分析
本课的教学重点:
梯形面积算公式的推导过程;
应用梯形的面积计算公式计算梯形的面积,解决生活中的相关问题;
教学难点:
理解在计算梯形面积时,为什么要“除以2”
二、说教法
根据本课教学内容的特点和学生的思维特点,我选择了直观演示法、引导发现法、小组合作等方法进行教学,应用演绎推理。充分发挥老师的主导作用,调动学生的能动性,引导他们去发现问题、分析问题、解决问题、获取知识,从而训练思维、培养能力。
直观演示法:让孩子在教具中直观地表示出拼成的平行四边形与梯形的关系;
小组合作、活动探究法:引导学生动手操作用同样的梯形去拼平行四边形,合作交流,相互启发
运用演绎推理:探讨出拼成的平行四边形与梯形的关系后,运用演绎推理,实行归纳概括……获得结论。
组织变式,有层次练习,增加体验,应用知识解决问题。
对比分析法:通过对比一组高相等、上底与下底和相等的梯形面积,通过演绎推理可以把三角形看成上底为“0”的梯形,平行四边形可以看成上底上底、下底相等的梯形。
三、说学法
教学时,我发挥学生的主体作用,充分调动学生的各种感官参与学习,诱发其内在的学习需要和学习潜力,独立主动地探究知识,使他们不仅学会,而且会学。把学生的求知欲由潜在状态诱发为活动状态,借以培养学生主动探索的精神。在此基础上,通过学生的观察、比较、分析,培养学生的演绎推理能力。
采用小组讨论、同桌交流等方法各抒己见,让每一位学生都有展示自己的机会,以学生为中心,努力为学生营造一个轻松、愉快的课堂学习氛围。
四、说教学过程
为了有效地达成以上教学目标,突破重点与难点,体现新课标倡导自主学习方式,我设计以下几个环节来组织学生开展探究活动。
第一环节:复习,导入新课
从我们学过哪些平面图形?会计算它的面积吗?入手,计算这些图形的面积,复习三角形面积的计算的推导方法,为下面的新课教学做好准备,这是本节课新知的最近发展区。同时出示梯形,计算它的面积,很多孩子不会计算,产生学习新知的需要。
第二个环节:动手操作,探究公式
首先再现旧知,先让学生说一说三角形面积公式的推导过程是怎样?为梯形面积公式的推导提供内在的类比推理。接着问学生:三角形面积公式的推导过程,你受到了什么启发?这时安排学生进行小组讨论、交流,让学生从中感悟到用转化的方法可以解决新问题,从而对学生的学法做了有力地指导,使学生更好地自己把握自己学习的活动。
为贯彻“学习是学习者主体主动建构的过程”这一理念,在这一环节的学习中,要充分相信学生,并为之提供主动建构的过程,从而使“有意义学习”的实现成为可能。自主探究公式这一环节也分两步进行:第一步,让学生拿出课前准备好的各种梯形,鼓励学生操作,寻找梯形面积的计算方法,让学生拼拼剪剪中实现转换。这样整个课堂就完全放开了,让学生自己去找;第二步(结合课件4以及教具梯形,在梯形上画一画,课件出示,数形结合表示两者之间的关系,适时板书)观察表格,你能发现梯形和拼成的平行四边形之间的联系吗?交流验证是学生在小组间相互交流,展示不同的思考方法。学生汇报时要充分肯定他们的推理与计算。学生在交流与展示中相互得到启发,这样学生就经历了一个学习再创造的过程,使学生创新思维得到更好的发展。在这的同时借助多媒体的演示课件,和教师准备的模具动手操作,帮助学生理解图形的转化,数形结合,使抽象的知识变得直观形象,给学生一个创新的空间。
学生经过自主探索合作交流,有的悟出了梯形面积公式,但不一定讲得清道理,有的学生在公式的理解上存在障碍,这时就要我们教师点拨。这时应抓住时机,引导学生梳理思路找出最简便的解题方法,结合板书与平行四边形的面积计算方法,应用演绎推理?师生共同推导出梯形面积的计算公式,并用字母表示出来,这时候计算公式的得出,也就水到渠成了。孩子理解了梯形的面积计算公式,就让他说一说,既是巩固新知,又在帮助孩子深化理解
第三个环节:运用知识,深化认识。
练习是理解知识、掌握知识、形成技能的基本途径,为使不同层次的学生都得到不同程度的发展,我设计了以下几个层次的练习:
巩固练习:
(1)直接用公式求面积
(2)先让学生计算出大坝的横截面的面积,再进行思想教育。让学生认识数学与生活是紧密联系的。
发展与综合性练习
(1)下面图中那几个梯形的面积相等?为什么?体会两底之和相等、高相等的梯形面积相等,并为后面的教学做铺垫;
(2)数学家波利亚曾说:“数学教师的责任是近其可能地来发展学生解决问题的能力。”算出梯形麦田的面积和小麦的吨数,增加实际应用的色彩,体验数学学习的有用性。
用发展的眼光看三角形、梯形、平行四边形
通过孩子的计算,应用数形结合的方法,通过讨论与演绎推理可以把三角形看成上底为“0”的梯形,平行四边形可以看成上底上底、下底相等的梯形。
五、说板书设计
在教学的过程中逐步形成,这样的设计体现了教学内容的系统性和完整性,又做到了重点突出,板书的结构便于演绎推理得出计算公式。
梯形的面积计算
拼成的平行四边形面积=底×高÷2
梯形面积=(上底+下底)×高÷2
S=(a+b)h÷2
六、说教学感受
在本课的的学习中,我紧扣生活实际,从学生已有的知识基础出发,让学生感受到学习的现实意义,有效开展探究活动,引导学生主动沟通已有知识内在联系,帮助学生更好地掌握知识,形成技能,培养素质。
很荣幸能参加今天的说课活动,真诚地希望能得到各位老师的帮助和指导!谢谢!
《梯形面积》说课稿13
一、说教材
1、教材分析:
“梯形面积的计算”,是在学生掌握认识梯形特征,学会平行四边形、三角形面积的计算,并形成一定空间观念的基础上进行教学的。因此,教材的编排不同于平行四边形和三角形,没有安排用数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积,使学生进一步学习用转化的方法思考。教材中的插图给出了转化的操作过程,同时继续渗透旋转和平移的思想,以便于学生理解。在操作的基础上,引导学生自己来总结梯形面积的计算公式,通过概括总结,提高学生的思维水平。进而再利用字母表述出新学的计算公式,以提高学生的抽象概括能力。最后通过例题进一步说明怎样应用梯形面积的计算公式来解决实际问题,并进行相应的练习。
2、教学目标:
1).知识目标:
使学生理解并掌握梯形面积的计算公式。
能正确地应用公式进行计算。
2).能力目标:
通过操作,培养学生的迁移类推能力和抽象概括能力。
3).情感目标:
培养学生善于动脑的良好学习习惯和对数学的学习兴趣。
3、教学重、难点:
教学重点:理解并掌握梯形的面积计算公式
教学难点:梯形面积公式的推导过程。
二、教法和学法:
教法:我采用了“活动探究”、“小组合作”“猜测—验证”等教学方法。使学生在数学学习活动中相互合作,主动探索,通过猜测,验证的方法,让学生通过实践操作来推导出梯形的面积计算公式并运用公式进行计算。
学法:与教法相结合,主要通过复习旧知——提出猜想——检验猜想——抽象概括——巩固提高——概括小结过程,使新知识转化为旧知,新知、旧知有机的融为一体,让学生把新知纳入已有的知识结构中去。
事实说话
三、教学过程
1、复习旧知,铺垫诱导
复习求平行四边形和三角形的面积。要求学生回忆三角形面积计算公式的推导过程。通过复习提问,从而唤起学生的回忆,为沟通新旧知识的联系,奠定基础。
复习梯形的特征。拿出梯形的图形,回忆梯形的特征(上底,下底,高,面积)。
2、诱发猜想,主动探索
启发学生运用已学的知识,大胆提出猜测,激发学生的探索新知的欲望。给出一般梯形(上底,下底,高),老师提出疑问:你们如何去求梯形面积。精心设计好这个开端,很自然地把学生带入新知的学习环节。这样既激发了学生探索新知的欲望,又使学生明确了探索目标与方向。
生:打算仿照求三角形面积的办法,把梯形转化成已学过的图形,再计算梯形的面积。
生:仿照求三角形面积的办法,用两个相同的梯形合成一个平行四边形,再计算梯形的面积。
3、验证猜想,体验成功
根据猜想,给出多个相同或不同的梯形模具和记录表,小组合作动手操作,并让不同的验证方法在实物投影仪上加以演示,使学生感受“两个完全一样的梯形都可以拼成一个平行四边形”,同时并叙述梯形与转化后图形之间的关系。
平行四边形的底=梯形的
平行四边形的高=梯形的
4、抽象概括,总结提高
学生经过自主探索合作交流,有的感悟出了梯形面积公式,但不一定讲得清道理,有的学生在公式的理解上存在障碍,基本处于“悱”、“愤”状态。这时应抓住时机,引导学生梳理思路找出最简便的解题方法,接着就重点演示两个完全一样的梯形拼成一个平行四边形,让学生观察原梯形和所拼图形之间有什么关系?师生共同推导出梯形面积的计算公式,并用字母表示出来,这时候计算公式的得出,也就水到渠成了
根据平行四边形面积=&nbs
p;
所以两个相等梯形面积=
因此一个梯形面积=
字母表示:
5、加深感受,完善结构
学生对一般梯形的面积推导已经有了深刻认识,但对梯形的知识结构还不够完善。这时老师就应继续引导学生对知识的深化。提出问题:是否任意梯形面积都可用这个公式计算呢?出示不同的等腰梯形,直角梯形的模具,让学生小组动手实验,自己研究,分析,记录。感知“任意两个完全一样的梯形都可以拼成一个平行四边形,并且任意的梯形面积=(上底+下底)×高÷2。”
6、巩固应用,强化提高
1)出示例3,理解题旨,学生尝试。
2)、练习p89做一做
设计意图:通过练习让学生更进一步掌握梯形的面积公式,同时运用梯形的面积公式解决一些实际问题。
7、总观全课,找到收获
利用2分钟时间小组内交流本堂课自己的收获,全班交流,教师及时补充。这节课在同学们自己的努力下有了这么多的收获,你们快乐吗?
同学们只要我们留意生活中很多地方都用到了梯形的知识,因此我们今天学习的内容在生活中是非常有用的,愿同学们都能用所学的知识来解释生活现象。
《梯形面积》说课稿14
今天我说课的内容是九年义务教育新人教版小学数学五年级上册第五单元第三节新授课《梯形的面积》。它属于“空间与图形”学习领域的一节课,是多边形面积计算中的一部分。
这一教学内容是在学生经历了平行四边形和三角形面积公示的推导基础上通过转化的方法将梯形转化为已经学过的并且会计算面积的图形。但这节课比前两节课又有所提高,他要求学生用学过的方法推导,但又没有指明具体的方法不再给出具体的方法,从教材中学生的操作可以看出,方法与途径多了,可以用分割的方法,也可以用拼摆的方法;可以转化为三角形进行推导,也可以转化成平行四边形进行推导。值得我们注意的是,联系前面两节的教学内容,不难看出,梯形面积计算公式的推导与平行四边形面积的计算关系最密切,且两者的教学思路也相似,同时梯形面积的教学与三角形面积的教学其公式的基本推导方法相同,除以2的道理也一样,所以它是三角形面积公式推导方法的拓展和延伸,并为今后学习圆面积、立体图形表面积及解答求积应用题打下坚实的基础。
从学情来看,在此之前,学生已经学习了长方形、正方形、平行四边形和梯形的认识以及长方形、正方形、平行四边形的面积,具有了一定探索图形的面积计算公式的经验,但对转化这种数学学习的方法和思想并不熟悉。所以开课时利用课件对平行四边形和三角形面积公式得推导过称的回顾再次向学生渗透数学“转化”的思想。加深对“转化”的数学思想方法的理解和应用,这些都为学生自主研究、探索“梯形的面积”这一新的学习任务创造了必要的条件。
基于以上对教材的理解与分析,针对学生的实际情况,确立如下教学目标与重难点:
教学目标:
1、运用迁移规律,利用学具进行自主探究,推导出梯形的面积计算公式;正确运用所掌握的梯形面积计算公式解决实际问题。
2、培养运用“转化”的思想解决实际问题的能力、迁移类推能力和抽象概括能力,发展空间观念。
3、感受知识来源于实践,认识事物之间相互联系,可以互相转化的。
4、通过合作学习,培养团结协作和勇于创新的精神。在解决问题的过程中,培养认真、严谨的学习习惯。
教学重点:理解并掌握梯形的面积计算公式。
教学难点:理解梯形面积计算公式的推导过程。
学生用到的学具有:自制的两个梯形图片、剪刀、直尺、教科书等。
我用到的教具:梯形图片、剪刀、实物展台、多媒体课件等。
新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形面积的计算》一课,为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。因次我将教学流程预设为四个环节:
一、以回顾旧知为导入,明确新知任务及探究方法。
我引导学生回顾平行四边形和三角形面积公示的推导过程,渗透转化的数学思想。引导学生明白在解决新问题时学会用转化的方法,从而打开学生探究梯形面积公式的思路,为学生在后边的动手操作过程中,借助不同的旧知解决新问题做好铺垫。
二、自主探究合作交流,探究新知。
在推导梯形面积计算公式时,想让学生自己利用手中学具将梯形转化成学过的图形。在让学生交流自己的转化成果。并进行全班展示。并让学生观察找出转化后的图形与原来梯形之间的联系,然后再选取其中的一到三种进行推导验证,使学生明白不论用哪一种转化后的图形进行推导最终都会归结为一种,就是上底加下底的和乘高除以2。通过两个层次的实践活动,让学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。
推导验证,完善建构。
巩固练习。加深记忆。
总结完善,自我反思。
在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在动手操作以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。
但也存在一些不足之处,例如:在推导验证的过程中,学生表达得不够清晰,对于推导的过程理解得还不够透彻。如果让他们充分地操作体会,时间又不允许。如何解决这样的矛盾,也是我需要反思的问题。
《梯形面积》说课稿15
一、旧知链接:
1、两个()的三角形可以拼成一个平行四边形。
2、一个三角形的面积是4.8㎡,与它等底等高的平行四边形的面积是()。
二、课堂导入:
三、学习目标:
1、经历梯形面积的探究活动,体验割补法在探究中的应用。
2、掌握梯形面积计算公式,并能正确进行梯形面积的计算。
3、能运用梯形面积计算公式解决相关的实际问题。
重点:运用梯形面积计算公式解决相关的实际问题。
难点:梯形面积计算公式的推导。
四、自主探究,合作交流
学习新知一:自研课本第59页内容
问题1:推导梯形面积公式
方法一:拼摆法。拼摆两个完全相同的梯形,一个正着放,另一个倒过来放,拼成了一个()形。(按步骤画出图形,标明梯形的上底、下底和高)
我发现:拼成的平行四边形的底是梯形的,拼成的平行四边形的高是梯形的,拼成的平行四边形的面积是个梯形的面积。
方法二:割补法。沿着梯形两腰的中点剪开,把梯形分成两个小梯形,再把两个小梯形拼成一个平行四边形。(先按步骤画出图形,再标明梯形的上底、下底和高)
我发现:拼成的平行四边形的底是梯形的,拼成的平行四边形的高是梯形的,拼成的平行四边形的面积就是原梯形的面积。
归纳总结:梯形的面积=字母式:
问题2:图中梯形的面积是多少?(注意:列综合算式)
学习新知二:求梯形的高。
问题1:根据梯形的面积公式推导出已知梯形的上、下底及面积,
梯形的高=
问题2:一个梯形的上底是2cm,下底是10cm,面积是21c㎡。它的高是多少cm?
能力提升:1、已知梯形的下底、高及面积,你能推导出梯形的上底公式吗?
梯形的上底=
2、已知梯形的上底、高及面积,你能推导出梯形的下底公式吗?
梯形的下底=
五、实战演练,我最棒!(完成课本第60页的“练一练”第3题做书上,其余题做导学案上)
六、课堂总结,整理学案
【《梯形面积》说课稿】相关文章:
08-31
11-02
07-08
08-05
07-28
12-01
11-16
11-30
11-04
11-12