小数近似数的教案

时间:2023-12-26 11:47:45
  • 相关推荐

小数近似数的教案

  作为一名老师,可能需要进行教案编写工作,借助教案可以提高教学质量,收到预期的教学效果。来参考自己需要的教案吧!下面是小编收集整理的小数近似数的教案,欢迎大家分享。

小数近似数的教案

小数近似数的教案1

  教学目标:

  1使学生能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。

  2使学生理解保留小数位数越多,精确程度越高。

  3培养学生的类推能力,增进学生对数学的理解和应用数学的信心。

  教学重点:用四舍五入法求小数的近似数。

  教学难点:明白要保留的小数数位里末尾的“0”不能去掉的原因。

  教学用具:课件

  教学过程:

  一、复习铺垫:

  (1)把下面各数省略万后面的尾数,求出它们的近似数(卡片出示)

  3650≈()119360≈()24800≈()270900≈()

  (2)下面的□里可以填上哪些数字?

  32□645≈32万47□05≈47万

  学生填完后,说一说是怎么想的。(回忆四舍五入法)

  (3)整数可以用四舍五入法来求近似数,怎样求小数的近似数呢?也就是用“四舍五入”的方法保留一定的小数位。下面我们就用四舍五入法来求小数的近似数。[板书课题:求一个小数的近似数])

  二、探究新知

  (一).出示例题:

  例1.李明在运动会中的'跳远成绩是2.953米,你知道他跳远成绩的近似数是多少吗?(要求:保留整数保留一位小数保留两位小数)

  师:保留是什么意思?说说你对这个词的理解

  让学生进行独立思考,发表意见,说出结果及想法。

  1保留整数

  根据提示思考:

  一找(),二看(),三()

  学生独立探索,小组交流,反馈后总结:一找个位,二看十分位,三五入.(板书:2.953≈2.95)

  师讲解:保留整数,表示精确到个位。

  (3)练习:0.999你会保留整数吗?

  2、保留一位小数(根据提示思考)

  (1)小组合作学习。

  (2)组内交流,组长汇报交流结果。自己总结:(一找十分位,二看百分位,三入..)(板书:2.953≈3.0)

  (3)师:近似数3.0末尾的0能不能去掉,为什么?(独立思考指名发表意见)

  ①教师出示线路图:(课件出示)

  ②引导学生小组讨论交流:

  使学生明确保留一位小数是3.0,原来的长度在2.95与3.05之间.保留整数为3,原来的准确长度在2.5与3.5之间,所以3.0比3精确的程度高一些.也就是小数保留的位数越多,精确的程度越高

  问:刚才我们已知道“保留整数,表示精确到个位。”那么保留一位小数,表示精确到哪一位呢?

  ③练习:0.999你会保留一位小数吗?

  3保留两位小数

小数近似数的教案2

  教学目的:

  ●使学生能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。

  ●培养学生的类推能力,增进学生对数学的理解和应用数学的信心。

  教学重点:能正确的求一个小数的近似数。

  教学难点:怎样准确的求一个小数的近似数。

  教学过程:

  一、导入新课

  师:我们已经认识了小数,生活中有许多小数的信息,你收集到了吗?

  生:汇报,教师按准确数和近似数把学生提供的信息中的小数分成两种写在黑板上。

  师:谁注意到了老师为什么把同学提供的这些小数分成两种写在黑板上呢?(生通过观察回答)

  师:在实际生活中有时不必说出小数的准确数,只要说出它的近似数就可以了,同学们看一看自己收集到的信息中有这样的情况吗?(生汇报和小数近似数有关的信息。)

  师:听了同学们的汇报,你有什么感受呢?小数的近似数在生活中应用的这么广泛,怎么求一个小数的近似数呢?今天我们就来一起学习。师板书课题。

  1、把下面各数省略万后面的尾数,求出它们的近似数(卡片出示)

  986534 58741 31200

  50047 398010 14870

  2、下面的□里可以填上哪些数字?

  32□645≈32万 47□05≈47万

  学生填完后,说一说是怎么想的。

  [以上复习内容重点抓住了整数取近似值的方法让学生回忆练习,通过复习唤起学生印象,为求小数的近似值打下基础]

  二、探究新知

  我们学过求一个整数的.近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。如:如豆豆的身高0.984米,平常不需要说得那么精确,那么如何求一个小数的近似数呢?今天我们就来学习这一内容。

  师:豆豆的身高0.984米,我们一般怎么表述豆豆的身高?

  你是怎样得出豆豆身高的进似数的?

  师:你们能利用已有的知识来求出这个小数在不同情况下的近似数吗?

  生:自己练习在练习本上做一做,然后在小组内进行交流,看一看有没有争议的地方。并引导学生按顺序进行汇报。

  生:

  (1)学生汇报保留两位小数求近似数的思维过程,并再找一名同学进行汇报,加深对方法的理解。

  (2)保留一位小数,有争议吗?找同学汇报自己的想法。学生讨论近似数是1.0还是1。教师出示线段图,看一看给学生带来什么启示。

  引导学生小组讨论交流:使学生明确保留一位小数是1.0,原来的长度在0.95与1.04之间。保留整数为1,原来的准确长度在1.4与1.0之间,所以1.0比1精确的程度高一些。也就是小数保留的位数越多,精确的程度越高。

  师:总结出尽管两个数的大小相等,但表示的精确程度不同,同学们认为哪个答案是正确的呢?求近似数时,小数末尾的零不能去掉。

  (3)保留整数部分应怎样思考,注意什么问题呢?

  师:请同学们回忆求0.984近似数的过程,你能发现求一个小数的近似数有什么共同的特点吗?同学们利用我们以前学过的知识也就是求整数近似数的方法,四舍五入的方法来求小数的近似数,希望同学在今后的学习中也能运用我们学过的知识来解决新的问题。下面我们就用这种方法来求课前同学们提供的这些小数的近似数。(保留到十分位)

  (4)小结:

  问:求一个小数的近似数应注意什么?

  引导学生讨论知道:求一个小数的近似数要注意两点:

  ①要根据题目的要求取近似值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;……然后按“四舍五入法”决定是舍还是入。

  ②取近似值时,在保留的小数位里,小数末一位或几位是0的.0应当保留,不能丢掉。

  三、练习

  (1)师:最后一个信息谁提供的,你能把这个信息用小数近似数的形式)表示出来吗?学生自己修改自己手中的信息,汇报后,再同桌之间交流。

  (2)师:老师也收集到了一些小数的信息,这些信息能用小数近似数的形式表述吗?能请你表示出来,不能,请说明理由)

  (3)师:同学们还记得自己的身高大约是多少吗?想知道老师的身高吗?教师提示:身高大约是1.6米,老师的实际身高是两位小数,猜一猜老师的实际身高是多少米?老师的身高是用四舍法得到的,再来猜一猜。

  (4)出示食物的价格,判断小明带12元钱够吗?学生自由发言,说明自己的理由。

  (5)出示租车说明,判断租多少辆车去出游?

  师:看来我们不仅要掌握求近似数的方法,还要灵活的运用所学的知识才能解决生活中的实际问题。

  四、全课小结:教师明确小数的近似数的方法与整数的近似数相似。要用“四舍五入”法保留小数位数。要注意保留小数位数越多,精确程度越高。

小数近似数的教案3

  教学目的:

  1、使学生掌握把一个不是整万或整亿的数改写成用万或亿作单位的数,以及根据要求保留一定的小数位数。

  2、培养学生的类推能力,增进学生对数学的理解和应用数学的信心。

  教学重点:掌握把一个不是整万或整亿的数改写成用万或亿作单位的数

  教学难点:根据要求保留一定的小数位数。

  教学过程:

  一、导入新课

  将下面的数写成以万为单位的数。

  一个人的头发约有80000到90000根。

  人造卫星每分钟约行472000千米。

  师:比较它们的相同点和不同点?

  相同点:都是把一个以个为单位数写成以万位单位的`数

  不同点:整万的数可以直接改写成一万位单位的数

  不是整万的数先省略万后面的尾数,用四舍五入的方法取近似数。

  二、新课:

  1像这样为了读写方便。常常把一个多位数改写成用万或亿作单位的数。

  我们知道整万或整亿的数能够直接改写成以万或亿位单位的数,不是整万或整亿的数怎么改写成用万或亿为单位的数?

  2木星的直径是142800千米,它离太阳的距离是778330000千米。

  它的直径是多少万千米?它离太阳的距离是多少亿千米?

  小组研究:

  尝试把上面两个数改写成以万或以亿为单位的数

  说明你是怎么想的?

  3小结:

  改写成以万为单位的数:小数点向左移动4位,加上万字。

  改写成以亿为单位的数:小数点向左移动8位,加上亿字。

  4练习:

  把24800改写成用万作单位的数

  把345280000改写成用亿作单位的数

  5像这样把345280000改写成用亿作单位的数是3。4528亿,小数点后有4位,小数位数太多,往往实际又没有用,这时就可以根据需要保留一定的小数位数。如这道题保留两位小数应该是多少?说说你是怎么想的?

  三、练习:

  1、把下面个数改写成以万为单位的数并保留两位小数

  台湾岛是我国第一大岛,面积35990平方千米。

  海南岛是我国第二大岛,面积34000平方千米。

  2、20xx年我国在校小学生116897000人,改写成用亿人作单位的数并保留一位小数。

小数近似数的教案4

  教学目标:

  1.通过知识迁移,使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数。2.使学生初步了解一个小时的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。3.进一步培养学生运用旧知迁移新知和类比推理的能力。

  教学重点:掌握用“四舍五入法”求一个小数的近似数。

  教学难点:求小数的近似数时,小数末尾的“0”不能去掉的理解。

  教学过程:

  一、复习旧知,情境导入。

  1.师:同学们好!很高兴今天能和大家一起学习。我一看见同学们就感觉很聪明,是不是这样?既然如此,老师就来考考你们,看看同学们表现如何!

  2.板书出示:老师这有个数,请省略万后面的尾数,求出它的近似数。

  先写黑板:12953≈1万

  3.师:你是怎么想的?(省略万以后的位数,就是看尾数的最高位千位。千位是2,比5小,舍去。)

  师:得数约等于1万,千位还可以是哪些数?(0、1、3、4)尾数的最高位比5小,直接舍去尾数。

  师:如果得数约等于2万,千位上又可以是哪些数呢?(5、6、7、8、9尾数的最高位等于或大于5,向前一位进1,再舍去尾数。)

  4.师:刚才我们求的是整数的近似数,你能说出求整数的近似数的方法吗?

  学生说方法。(板书:求整数的近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。)学生齐读。同学们读得真好,和你们一起学习真快乐!

  二、整合情景,探究交流。

  1.师:今天我们来研究求一个小数的近似数,在实际应用小数时,往往没必要说出它的准确数,只要它的近似数就可以了。如:昨天豆豆体检,量得身高是(板书):0.984米。平常不需要说得那么准确,我们一般怎么说豆豆的身高呢?(学生讲,红红姐姐说豆豆身高0.98米。或1米。看回答情况板书。)

  这就是0.984的近似数,你是怎么得到豆豆的身高的近似数?你们能利用已学的知识来说一说吗?

  保留两位小数,就要省略百分位后面的尾数,看千分位。千分位是4,小于5,把尾数舍去。所以0.984≈0.98。

  谁再来说一遍?(2-3名同学。表扬。)

  2.(如果说的是1米,0.984的近似数还可以是多少?)小白弟弟的说法和小红姐姐不一样,他认为“豆豆身高约1米。”你能说说他的想法吗?

  (保留整数,就要省略整数后面的尾数,看十分位。十分位是9,大于5,向前一位进1。所以0.984≈1。)谁再来说一遍?。请同桌把这两题的思考过程互相说一说。

  3.同学们真能干,其实这就是我们今天要学习的求小数的近似数。(板书课题)请同学们回忆一下我们求近似数的过程,你发现求一个小数的近似数是怎样做的'?(学生回答。)求小数的近似数和求整数的近似数的方法相同。板书:小数。全班读--求小数的近似数,先看所省略的最高位上的数是不是满5,再用四舍五入法保留。

  4.现在,老师来考考你们,0.984可以保留整数、保留两位小数,如果0.984保留一位小数,应该是多少?(保留一位小数,就要省略十分位后面的尾数,看百分位。百分位是8,大于5,向前一位进1。十分位上9加1得10,再向个位进1,所以0.984≈1.0。)

  5.学习了求小数的近似值,老师有一些疑惑不能解开,(幻灯出示)0.984保留一位小数得1.0,小数末尾的0能去掉吗,为什么?(指名回答。)

  不能,题目要求保留一位小数,必须要0占位。求近似数时,小数末尾的零不能去掉。

  求得的近似数1.0和1比较,哪一个更精确一些,为什么?

  幻灯演示:保留整数为1,原来的准确长度在1.4与0.5之间,保留一位小数是1.0,原来的长度在0.95与1.04之间。尽管两个数的大小相等,但表示的精确程度不同,小数保留的位数越多,精确的程度越高。

  三、练习。(智力闯关。)

  同学们利用我们以前学过的知识“求整数近似数的方法来求一个小数的近似数”,希望同学们在今后的学习中也能运用我们学过的知识来解决问题。

  1.第一关。保留一位小数。

  0.58≈0.63.788≈3.8

  精确到百分位。精确到百分位就是保留几位小数?

  12.004≈12.001.987≈1.99

  保留整数。

  9.956≈109.0448≈9

  2.第二关。在□里填数。

  2.9□≈2.98.5□7≈8.56

  3.第三关。

  姚明的身高约为2.2米,姚明的身高可能是多少米?

  2.15(6、7、8、9)2.155……

  2.20(1、2、3、4)2.……

  四、全课。

  你今天有哪些收获?保留一位小数,就是精确到十分位,……

  板书设计

  求小数的近似数

  12953≈1万0.984≈0.98保留两位小数,看千分位。

  小于5,舍去。小于5,舍去

  0.984≈1.0保留一位小数,看百分位。

  0.984≈1保留整数,看十分位。

  大于5,向前一位进1。

小数近似数的教案5

  教学内容:

  义务教育课程标准实验教科书青岛版第71页《求小数的近似数》。

  教学目标:

  1.借助已有经验,使学生掌握求一个小数近似数的方法,能够正确地求一个小数的近似数。

  2.在解决问题的过程中,培养学生自主学习的能力,初步学习用猜想、比较、归纳等数学方法学习数学知识。

  3.通过独立思考,培养学生认真审题、解题的良好学习习惯。

  教学过程:

  一、创设情景

  1.谈话:同学们,本单元前面几个信息窗我们学习了形形色色的鸟蛋和龟蛋带给我们的数学知识。本节课我们继续来学习本单元最后一个信息窗绿毛龟蛋带给我们的数学知识。

  出示情境图,仔细观察画面,你知道了什么?你又能提出哪些数学问题?

  学生合作交流。

  2.谈话:这节课重点解决他们说的结果为什么不一样和绿毛龟蛋的宽径约是多少这两个问题。其他问题放在问题口袋里以后解决,可以吗?

  [设计意图]激发学生的学习愿望和参与动机是引导学生主动学习的前提,通过清晰生动的'情境图中出现的两位同学不同的测量结果让学生观察讨论,学生意见不一,于是需要寻找正确的判断方法,由此激起学生探寻新知的强烈愿望。

  二、探究新知

  1.学生独立思考他们说的结果为什么不一样?这一问题。

  谈话:观察两位同学说的结果,你能发现什么?

  让学生观察,引导学生发现:小华读出的结果是一个一位小数,小明读出的结果是一个整数。

  谈话:对,求3.94的近似数,根据不同的要求,既可以保留一位小数,也可以保留整数。请同学们选择一种情况,根据我们求整数的近似数的方法,研究一下怎样求一个小数的近似数。

  学生独立研究后,再在小组内交流。

  谈话:哪位同学愿意说说你是怎样求3.94的近似数的?把你的方法向大家介绍一下。

  谈话:你的方法很正确,还有哪位同学与他求得的近似数不同?

  谈话:你的方法也很正确。因此,我们在求一个小数的近似数时,依然运用了四舍五入法,关键是看精确到哪一位。

  2.学生独立思考绿毛龟蛋的宽径约是多少?这一问题

  学生独立思考后,引导学生讨论什么时候小数的近似数的2,什么时候小数的近似数的2.0。

  讨论得出:求一个小数的近似数时,保留小数的数位不同,精确程度也不同。

  [设计意图]这一环节教学时让学生自己去观察,在观察中探究新知,在交流中归纳新知,把学习的主动权交给学生,在观察讨论过程中教谈话为学生创设自由选择的空间,让学生体会自由选择的轻松和快乐。

  三、巩固应用

  1.黄河的流域面积是75.14万平方千米。(保留一位小数)

  2.把1.463保留整数、把1.463保留一位小数和把1.463保留两位小数这三种说法的结果是否是一样的?

  3.小华的体重保留整数是45千克,他的体重可能是多少千克?

  [设计意图]练习中让学生交流不同的思考方法,鼓励学生思维的创新,方法的简洁,但也照顾学生不同的认知水平,尊重学生的学习成果。

  四、感悟收获

  谈话:今天大家学得愉快吗?你们最大的收获是什么?

  (学生自由说说说本课的收获及体验)

  课后反思:

  教师是教学的组织者和引导者,而不仅仅是解题的指导者。本节的教学我通过几个问题,几句话做适当的引导,而留给学生大量的时间让他们去观察,去思考,去交流,在观察中探究新知,在交流中归纳新知,把学习的主动权交给学生。在学习讨论的过程中,教师为学生创设自由选择的空间,引导学生敞开思维,多角度探索,实现高效率学习。

小数近似数的教案6

  教材分析:

  学生在之前学过求整数的近似数,已形成基本的学习经验。

  学情分析:

  在学习前唤起学生的经验回忆四舍五入的方法。

  教学目标:

  1、使学生能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。

  2、培养学生的类推能力,增进学生对数学的理解和应用数学的信心。

  教学重难点:

  重点:

  能正确的求一个小数的近似数。

  难点:

  怎样准确的求一个小数的`近似数

  (一)、创设情境,复习较大数的近似数

  (二)、认定目标,导入新课

  (三)、互动交流

  (四)、全课总结

  师:豆豆的身高0.984米。0.984是一个精确值,那我们可以说豆豆身高大约多少米呢?

  师:如果保留两位小数,就要第三位数省略。 0.984的第三位小数是“3”,小于5,舍去,所以0.984≈0.98。

  师:保留两位小数的近似数是精确到哪一位的?

  师:你们还可以求出这个小数在别的不同情况下的近似数吗?

  师:如果保留整数,就要把小数部分省略。小数第一位,也就是十分位是9,大于5,向前一位进一,所以0.984≈1。

  师:保留整数的近似数是精确到哪一位的?

  师:尽管两个数的大小相等,但表示的精确程度不同。求近似数时,小数末尾的零不能去掉。

  师:求近似数时,保留整数,表示精确到个位。保留一位小数,表示精确到十分位。保留两位小数,表示精确到百分位……

  生:精确到小数第二位,也就是百分位

  生:精确到个位生:①要根据题目的要求取近似值,如果保留整数,就看十分位是几。要保留一位小数,就看百分位是几。……然后按“四舍五入法”决定是舍还是入。②取近似值时,在保留的小数位里,小数末一位或几位是0的。0应当保留,不能丢掉,为了实现学生已有知识的正迁移,通过联系生活中的事例,复习四舍五入法取较大数的近似数,同时对学生进行思想情感教育。

  作业填空:

  (1)求一个小数的近似数,要根据()法来保留小数的数位,保留整数时,表示精确到()位,保留一位小数时,精确到()位,保留两位小数时,精确到()位......

  (2)近似数的结果一般的说6.0比6精确,因为6.0精确到了(),6精确到了()位,所以6.0的末尾中的”0”不能去掉。

  2、按要求写出表中小数的近似数。保留整数、保留一位小数、保留两位小数

  4.808

  20.256

  1.995

  板书设计:

  小数的近似数:

  0.984≈0.98

  0.984≈1.0

  想一想:0.984≈1

  在表示近似数的时候,小数末尾的0不能去掉。

小数近似数的教案7

  教学目标

  1.使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数.

  2.使学生学会把较大的整数改写成以“万”或“亿”作单位的小数.

  教学重点

  求一个小数的近似数及把较大的数改写成以“万”或“亿”作单位的小数.

  教学难点

  使学生能够区别求近似数与改写求准确数的方法.

  教学步骤

  一、铺垫孕伏.

  1.把下面各数省略万后面的尾数,求出它们的近似数.(卡片出示)

  986534 58741 31200

  50047 398010 14870

  2.下面的□里可以填上哪些数字?

  32□645≈32万 47□05≈47万

  学生填完后,说一说是怎么想的.

  二、探究新知.

  1.导入新课.

  我们学过求一个整数的近似数.在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了.如:量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米,那么如何求一个小数的近似数呢?今天我们就来学习这一内容.(板书课题:求一个小数的近似数)

  2.教学例1:求一个小数的近似数.

  (1)教师谈话:求一个小数的近似数,同求整数的近似数相似,根据需要用“四舍五入法”保留一定的小数位数.

  (2)出示例1:2.953保留两位小数、一位小数和整数,它的近似数各是多少?

  教师提问:保留两位小数,要看哪一位?怎样取近似数?

  使学生明确:2.953保留两位小数,就要看千分位,千分位不满5,舍去,求得近似值数2.95.

  学生讨论:2.953保留一位小数和整数,要看哪一位?怎样取近似数?

  使学生明确:2.953保留一位小数,就要看百分位,百分位满5,向十分位进1,求得近似数3.0. 2.953保留整数就要看十分位,十分位上满5,向前一位进一得到3.

  分组讨论:保留一位小数3.0十分位上的“0”能不能去掉?为什么?

  教师总结说明:保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位……

  (3)求下面小数的近似数.

  3.781(保留一位小数)

  0.0726(精确到百分位)

  (4)讨论分析:3.0和3数值相等,它们表示精确的程度怎样?

  ①教师出示线路图:(投影出示)

  ②引导学生小组讨论交流:

  使学生明确保留一位小数是3.0,原来的长度在2.95与3.05之间.保留整数为3,原来的准确长度在2.5与3.5之间,所以3.0比3精确的程度高一些.也就是小数保留的位数越多,精确的程度越高.

  (5)小结.

  教师提出问题:求一个小数的近似数应注意什么?

  引导学生讨论知道:求一个小数的近似数要注意两点:

  ①要根据题目的`要求取近似值,如果保留些数,就看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是合还是人.

  ②取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉.

  (6)分组合作学习,填表.

  在下表的空格里按照要求填出近似数.

  保留整数

  保留一位小数

  保留两位小数

  保留三位小数

  3.教学例2:1999年我国生产家用电风扇61581400台.把这个数改写成用“万台”作单位的数.

  (1)教师提问:把61581400台改写成用“万台”作单位的数,应该用多少来除?缩小多少倍?小数点应该向哪个方向移动几位?

  (根据学生回答教师板书:61581400台=6158.14万台)

  教师总结说明:把较大数改写成用“万”作单位的数,只要在万位的右边,点上小数点,在数的后面加写“万”宇.

  (2)做一做.

  把248000改写成用“万”作单位的数.

  4.教学例3:1999年我国生产水泥573000000吨.把这个数改写成用“亿吨”作单位的数.再保留一位小数.

  (1)学生讨论:把一个数改写成用“亿吨”作单位的数,应该怎么办?

  学生独立改写成573000000吨=5.73亿吨≈5.7亿吨,并说出改写的方法.

  教师提问:如果要求保留一位小数怎么办?

  启发学生自己得出≈1.4亿吨,并说出保留一位小数的方法.

  教师总结说明:把较大数改写成用“亿”作单位的数,只要在亿位的右边,点上小数点,在数的后面加写“亿”字.如果小数位数比较多,可以根据需要保留前几位小数.

  (2)“做一做”第2题.

  把750000000改写成用“亿”作单位的数.

  “做一做”第3题.

  把34562800000改写成用“亿”作单位的数后,保留两位小数.

  5.区别对比.

  例2、例3的学习中,有的数需要把它改写成以“万”或“亿”作单位的数,有的则还需要保留位数求近似数,它们有什么区别?应该注意什么?(引导学生讨论)

  三、巩固发展.

  1.填空.

  求一个小数的近似数,要根据需要用( )法保留小数数位.保留整数,表示精确到( )位;保留一位小数表示精确到( )位;保留两位小数表示精确到( )位……

  2.填空.

  近似数的结果一般地说6.0要比6精确.因为6.0表示精确到了( )位,6表示精确到了( )位,所以6.0后面的“0”不能丢掉.

  3.下面各小数在哪两个相邻的自然数之间?它们各近似于哪个自然数?

  5.28 12.71 4.86 7.05

  4.按照四舍五入法写出表中各小数的近似数.

  保留整数

  保留一位小数

  保留两位小数

  保留三位小数9.9564

  0.9053

  1.4639

  5.(1)1999年北京市从事工程技术的人员共120100人,改写成用“万人”作单位的数.

  (2)1999年我国出版图书7320000000册(张),改写成用“亿册(张)”作单位的数.

  四、全课小结.

  今天我们学习了怎样求一个小数的近似数,求小数的近似数的方法与求整数的近似数相似.要用“四合五入”法保留小数位数.要注意保留小数位数越多,精确程度越高.

  五、布置作业.

  1.把下面各小数四舍五入.

  (1)精确到十分位:3.47 0.239 4.08

  (2)精确到百分位:5.344 6.268 0.402

  2.把下面各数改写成用“亿”作单位的数.

  (1)保留一位小数:3672800000 648500000

  (2)保留两位小数:4853900000 288160000

  板书设计

  求一个小数的近似数

  例1 2.95保留二位小数,一位小数和整数,它的近似数各是多少?

  2.953≈2.95

  2.953≈3.0

  2.953≈3

  求一个小数的近似数要注意:

  ①要根据题目的要求取近似值.

  ②取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉.

  例 2 61581400台=6158.14万台

  在万位右边点上小数点,在数的后面加写万字.

  例3 573000000吨=5.73亿吨 .5.7亿吨

  在亿位右边点上小数点,在数的后面加写亿字.

  数学教案-求一个小数的近似数

小数近似数的教案8

  教学内容:p.40、41例9及相应的试一试、练一练,完成练习七第4~8题

  教学目标:

  1、结合现实的情景,通过学生自主观察、合作学习探索出求小数近似数的方法并理解为了保证近似数的精确值,近似小数末尾的0不能去掉。

  2、培养学生有条理、有依据地进行思考的习惯,以及独立思考、合作交流、用自己的方法解决问题和有条理地描述学习过程的能力。

  3、在主动参与学习活动的过程中,获得成功的体验。

  教学重点:求小数近似数的方法。

  教学难点:理解为了保证近似书的精确值,近似小数末尾的`0不能去掉。

  教学过程:

  一、复习:

  1、昨天学了改写小数,板书:改写

  说说改写的最本质的要求是什么?(大小不变)

  指出在改写中主要的2个问题:(1)漏写单位名称;(2)改写好后,小数末尾的0要化简。

  2、改写

  分别改写成“万”和“亿”为单位的小数。

  指名说说具体的方法。说“万”的时候注意末尾的0,说“亿”的时候注意位数不够的时候用0补。

  二、学习新知:

  1、理解“精确”:

  通过预习,你知道今天要学什么?(板书:近似数)

  你想到什么?(≈、四舍五入)

  2、读,并写书数据:地球和太阳之间的平均距离大约是1.496亿千米。

  问:这是一个几位小数?

  现在学习精确到整数?精确到十分位?精确到百分位?分别是多少。

  (1)精确到整数,你怎么理解的?结果是多少?为什么?

  (2)精确到十分位,你怎么理解的?结果是多少?为什么?

  (3)精确到百分位,你怎么理解的?结果是多少?为什么?

  比较两个小数:1.5,1.50这后面的小数能不能也写成1.5?为什么?

  指出:题中要求要精确到百分位,也就是保留两位小数,不能化简。

  3、补充:0.9946

  分别请学生思考并回答:保留整数?一位小数?两位小数?三位小数?

  注意进位问题

  4、比较两个概念:改写、精确

  你能说说它们的区别在那里?

  达成共识:改写时大小不改变,用“=”,精确时得到的是近似数,用“≈”

  三、巩固练习:

  1、试一试。指名说出近似数。指出要看清楚保留的位数。

  2、练一练。

  (1)求下面各小数的近似数。(略)

  指名说说结果,遇到困难的加以指导。

  (2)先改写成用“万人”作单位的数,再写出它们的近似数。

  注意解答的顺序、联系。指名交流。

  3、完成p.43的练习。

  (1)第4题。写出表中各小数的近似数。

  (2)第5题。身高、体重的精确。要注意精确的位数。

  (3)第6题。在下面的○里填上=或≈

  上下两个数对比,说说为什么一个填“=”?一个填“≈”?

  (4)第7题。注意审题:“改写”。按要求完成并交流。

  (5)第8题。审题,明确题目要求,规范地书写解答。交流。

  四、布置作业。

小数近似数的教案9

  教学内容:求一个小数的近似数--教材第105-106页例1,做一做题目及练习二十四1-3题。

  教学目的:使学生初步学会根据要求用四舍五入法保留一定的小数位数,求出小数的近似数。培养学生综合运用知识的能力。

  教学重、难点:求一个小数的近似数及把较大数改写成以万或亿作单位的小数是教学重点。把较大数改写成以万或亿作单位的小数,容易丢掉计数单位或单位名称,求近似数与改写求准确数容易混淆,这是学习的难点。

  教学过程:

  一、复习

  先省略万后面的尾数,求出近似数,再省略千后面的尾数,求出近似数。

  1295356089020114536697010

  二、新课

  教师:我们已经学过求一个整数的近似数(或近似值)。在实际使用小数的时候,有时也没有必要说出它的准确数,只要说出它的近似数就够了,例如,量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米。

  我们已经会求一个整数的近似数,求一个小数的近似数的方法,同求整数的近似数的方法相似,是根据需要用四舍五入法保留一定的小数位数。

  教师用投影片(或小黑板)出示例1的第1小题:2.953保留两位小数,它的近似数是多少?

  教师:2.953保留两位小数,就是要省略哪一位后面的尾数?(省略百分位后面的尾数。)

  省略百分位后面的尾数,要看哪一位上的数?(要看千分位上的数。)

  接下来用四舍五入法怎样做?(因为千分位上的数3不满5,把它舍去。)

  教师板书:2.9532.95

  教师:谁能连贯地把做这题的过程说一说。

  指名让学生说一说,然后教师总结:

  做这题时要想:要保留两位小数,就要省略百分位后面的尾数。千分位上不满5,直接舍去。

  教师用投影片(或小黑板)出示例1的第2小题:2.953保留一位小数,它的近似数是多少?

  教师:2.953保留一位小数,就是要省略哪一位后面的尾数?(省略十分位后面的尾数。)

  省略十分位后面的尾数,要看哪一位上的数?(要看百分位上的数。)

  用四舍五入法怎样做呢?(因为百分位上的数满5,省略百分位和千分位上的数后,要向十分位进1。)

  2.9加上进上来的1就是3.0。所以2.9533.0。

  教师板书:2.9533.0

  教师强调:这题的要求是保留一位小数,所以小数末尾的0不能去掉。

  教师:谁能连贯地把做这题的过程说一说。

  指名让学生说一说,然后教师总结:

  做这题时要想:要保留一位小数,就是省略十分位后面的尾数。百分位上满5,省略尾数后,向十分位进1,末尾的0不能去掉。

  教师用投影片出示例1的第3小题:2.953保留整数,它的近似数是多少?

  教师板书:2.953

  教师:谁能做出这题并且说一说应该怎样做?

  指名让学生做这题,并且说一说是怎样做的。

  根据学生的发言,教师板书:2.9533,并且总结:做这题时要想;要保留整数,就要省略整数后面的尾数。十分位上满5,省略尾数后向个位进1,所以2.9533。

  教师:观察上面三道题,是同一个小数保留两位小数,保留一位小数和保留整数。每一次求出的近似数的精确度是不同的。保留整数,表示精确到个位;那么保留一位小数,表示精确到什么位?(十分位。)保留两位小数呢?(表示精确到百分位。)

  指名学生回答上述问题。条件较好的班,教师可以接着讲一讲关于精确度的问题。讲法可以如下:

  教师:那么,上面的三个近似数哪一个更精确一些呢?我们现在证明一下。如果2.953表示的是测量一段绳子的长度得到的'结果:2.953米。

  教师用投影片(或小黑板)出示图如下:

  教师:2.953保留两位小数时,是2.95米,表示精确到百分位。保留一位小数是3.0米,表示精确到十分位,也就是说绳子的准确长度不小于2.95米,也不能等于或大于3.05米。因为如果是2.94米,保留一位小数就是2.9米了;如果是3.05米或3.06米,保留一位小数就是3.1米了。再看当保留整数位3时,表示精确到整数个位,也就是说准确长度不能小于2.5米,不能等于或大于3.5米。所以前一个近似数都比后一个近似数精确程度要高一些,即2.95米的精确度高于3.0米的精确度,3.0米的精确度又高于3米的精确度。

  教师用投影片或小黑板出示第106页上半页做一做中的第1题,并且加一题:4.795(保留两位小数)。指名让学生做,集体订正。

  教师:我们学会了怎样求一个小数的近似数。想一想,求一个小数的近似数应该注意什么?同桌讨论一下。

  指名让学生发言,在学生发言的基础上教师总结:

  1.要根据题目的要求取近似值,即:保留整数,就看十分位是几,要保留一位小数,就看百分位是几,......然后按四舍五入法决定是舍还是入。

  2.取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉。

  三、课堂练习

  1.做第106页上半页做一做的第1、2题,学生独立做,做完以后,集体订正。

  2.做练习二十四的第3题。

  教师先提问:精确到十分位是什么意思?(保留一位小数。)

  精确到百分位是什么意思?(保留二位小数。)

  然后,让学生独立做,教师巡视,个别辅导,强调要注意的两点。做完后,集体订正。

  四、课堂作业

  练习二十四的第1-2题。

小数近似数的教案10

  【教学目标】

  1、使学生会用“四舍五入”法保留一定的小数位数,求出小数的近似数,将不是整万或整亿的数改写成用“万”或“亿”单位的数。

  2、通过学生自主探索、合作交流,培养学生的探索能力。

  【教学重点】

  使学生掌握求一个小数的近似数的方法。

  【教学难点】

  使学生准确、熟练地应用“四舍五入”法求一个小数的近似数。

  【教具】

  多媒体课件

  【教学过程】:

  一、课前预习

  1、怎样用“四舍五入”法求出一位小数的近似数?

  2、怎样将不是整万或整亿的数改写成用“万”或“亿”作单位的数?

  二、展示交流

  (一)创设情境,引入新知

  课件出示豆豆,看看小豆豆的身高是多少呢?

  今天下午我们就来研究求一个小数的近似数。

  (二)求小数的近似数的方法

  1、同学们还刻求整数的近似数的方法吗?我们可不可以用“四舍五入”法来求小数的近似数呢?

  2、探究新知

  (1)同桌讨论回忆什么是“四舍五入”法?

  (2)讨论尝试

  ①那么求一个小数的近似数,我们也可以根据需要用“四舍五入”法省略十分位、百分位、千分位后面的数。

  ②出示例1,讨论求0。984的近似数

  ③保留一位小数时,末尾的“0”为什么应该写呢?

  (3)总结归纳。求一个数的近似数,保留不同的位数,求得的'近似数不同。保留小数位数越多,这个近似数就越接近准确数,也就是更精确。

  (三)将不是整万或整亿数改写成用“万”或“亿”作单位的数

  1、出示教材第74页例2

  ①讨论:通过课件图片中的数学信息,我们怎样表示这些数的读写会比较方便呢?

  ②结论:改写成用“亿”或“万”作单位的数。

  2、从算理入手,理解改写方法。

  ①讨论:怎样改写呢?

  ②结论:改写时在万位后面点上小数点,写上“万”字,并去掉小数末尾的0就可以了。改写成以“亿”作单位同上。

  三、检测反馈

  1、教材第74页上、下的“做一做”。

  2、教材第75页练习十二第一、2题。第3、4题

  四、板书设计教

  求一个数的近似数

  四舍五入

  法

  保留两位小数0.984≈0.98 142800千米=14.28万千米

  保留一位小数0.984≈1.0 778330000千米=7.7833亿千米

  ≈7.8亿千米

  保留整数0.984≈1

  注意:在表示近似数时,小数末尾的0不能去掉

  教学反思:

  现代课堂理念提倡师生互动、生生互动、学生思维的灵动、学生智慧的碰撞,而在自己的课堂中就缺失了这些,那么导致课堂氛围是平淡无味的,学生心底潜在的积极热情没有调动起来,虽然学生也在发言、讨论、交流,但是每个孩子的情感体验不是真正愉悦的。造成这样课堂效果的原因还是因为自己对于整个课堂的把控不够巧妙,刻意的在完成自己设计好的教学,没有和孩子们融合。

小数近似数的教案11

  教学目的:

  1、使学生能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。

  2、培养学生的类推能力,增进学生对数学的理解和应用数学的信心。

  教学重点:

  能正确的求一个小数的近似数。

  教学难点:

  怎样准确的求一个小数的近似数。

  教学过程:

 一、前置作业

  1、下面我们就用这种方法来求课前同学们提供的这些小数的近似数。

  (1)0.25612.006(保留两位小数)

  (2)43.958(保留一位小数)

  (3)13.499(保留整数)

  2、求下面小数的近似数。

  (1)3.474.08(精确到十分位)

  (2)5.3440.402(省略百分位后面的尾数)

  3、思考题:一个两位小数,它的近似数是5.6,那么这个小数最大是多少?最小是多少?

 二、探究新知

  1、导入新课

  我们学过求一个整数的近似数。在日常生活和计算,我们有时还需要求出一个小数的近似数。比如说这天豆豆陪妈妈去买水果,明明电子秤上显示苹果的总价是8.953元,可以售货员阿姨却说:“请付8.95元。”她是怎样把8.953元取近似数为8.95元呢?

  【引导学生说出用可以用四舍五入的方法求出小数的近似数】

  那么今天我们就来学习如何求一个小数的近似数。

  【板书课题:求一个小数的近似数】

  2、新授

  师:豆豆的身高0.984米。0.984是一个精确值,那我们可以说豆豆身高大约多少米呢?

  (1)保留两位小数。

  师:如果保留两位小数,就要第三位数省略。 0.984的第三位小数是“3”,小于5,舍去,所以0.984≈0.98。

  师:保留两位小数的近似数是精确到哪一位的?

  生:精确到小数第二位,也就是百分位。

  师:你们还可以求出这个小数在别的不同情况下的近似数吗?

  (2)保留整数。

  师:如果保留整数,就要把小数部分省略。小数第一位,也就是十分位是9,大于5,向前一位进一,所以0.984≈1。

  师:保留整数的近似数是精确到哪一位的.?

  生:精确到个位。

  (3)保留一位小数。

  师:如果保留一位小数,豆豆身高大约是多少米?

  【学生讨论近似数是1.0还是1。引导学生小组讨论交流:使学生明确近似数1.0,精确到十分位;近似数1是精确到个位,所以1.0比1精确的程度高一些。也就是小数保留的位数越多,近似值就越精确。】

  师:尽管两个数的大小相等,但表示的精确程度不同。求近似数时,小数末尾的零不能去掉。

  (4)小结:

  师:请同学们回忆求0.984近似数的过程,我们是怎么求出这个小数的近似数的?

  生:

  ①要根据题目的要求取近似值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;……然后按“四舍五入法”决定是舍还是入。

  ②取近似值时,在保留的小数位里,小数末一位或几位是0的。0应当保留,不能丢掉。

  师:求近似数时,保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位……

三、全课总结

  教师明确小数的近似数的方法与整数的近似数相似。要用“四舍五入”法保留小数位数。要注意保留小数位数越多,精确程度越高。希望同学在今后的学习中也能运用我们学过的知识来解决新的问题。

  【反思】:

  本课是在学生熟练掌握求整数的近似数的基础上学习求一个小数的近似数。首先是复习旧识这个环节重点抓住了整数取近似值的方法让学生回忆练习,通过复习唤起学生印象,为求小数的近似值打下基础,也在做题时抛出了疑问:求整数的近似数是用“四舍五入”的方法,那么求小数的近似数是不是也可以用“四舍五入”的方法来求呢?

  秉承数学来源于生活,我在引入环节选取的题材也是生活中常见的:豆豆买水果,苹果总价是8.953元,售货员阿姨却说付8.95元,既是从生活实际出发,同时也引导学生说出用可以用四舍五入的方法求出小数的近似数,继而引出课题:用四舍五入的方法求一个小数的近似数。

  利用豆豆的身高创设情景,选材始终贴近生活,提出问题:0.984大约是多少?学生独立思考,根据学生的回答,分别出示求0.984保留整数部分和保留两位小数的近似数。在教学设计时预设到学生可能很难回答出0.984保留一位小数的情况,这就需要老师来引导学生思考,这里容易出现争议,到底是1.0还是1?使学生明确近似数1.0,精确到十分位;近似数1是精确到个位,所以1.0比1精确的程度高一些。也就是小数保留的位数越多,近似值就越精确,越接近原来的准确数。但是在这个环节我处理得不太好,学生虽然知道小数末尾的0不能去掉,但并没有理解透彻这个0为什么不能去掉,是因为精确的数位不同,两个数的意义就不同。在评课时老师也指出这个难点没有完全突破,是否在此处采用小组讨论让学生自主探究会不会更合适。

  新授后的练习设计中我注重了题目的梯度,从基本的求近似数到难度较大的拓展思考题,也符合了学生从简单到难的思维方式。下课后听了指导老师和其他老师的评课,我也深深的进行了反思。可能是由于低年级的教学习惯所致,我们总喜欢重复学生的话,或者自己讲得太多,没有放手多让学生思考,多让学生自行探究,中高年级的学生已经有自己的思维方式了,老师过多“带”着学习反而会令学生的思维受到局限,我已经注意到自己在这方面的不足,也尝试着改变这些不太合适的教学习惯,期盼在今后的教学中有更大的进步。

小数近似数的教案12

  设计说明

  学生在之前学习过求整数的近似数,已经掌握了基本的学习经验。因此,在本节课的教学设计上注重体现以下几点:

  1.创设生活情境,感受数学与实际生活的联系。

  《数学课程标准》中指出:数学源于生活又服务于生活。据此,在教学时,结合教材例1创设的豆豆测身高的情境引入新课,使学生体会到小数在生活中的广泛应用。这样就把求一个小数的近似数的知识还原于生活,应用于生活,让学生感受到数学与实际生活的紧密联系。

  2.注重类推,让学生经历知识迁移的过程。

  求小数的近似数的方法与求整数的近似数的方法相同,学生对用“四舍五入”法求近似数有了一定的理解和掌握。在此基础上,让学生把学过的求整数的近似数的方法迁移类推到求小数的近似数上去,实现知识的良好迁移,使学生掌握迁移、类推的学习方法。

  3.注重引导,让学生在探究中学习。

  在教学求小数近似数的过程中,我充分放手,先引导学生在小组合作学习、讨论交流的基础上理解保留几位小数的意义,再引导学生探究如何求一个小数的近似数,最后引导学生总结归纳出求小数近似数的方法。

  课前准备

  教师准备 多媒体课件 卡片

  教学过程

  ⊙复习导入

  1.复习旧知。

  (1)把下面各数省略“万”位后面的尾数,求出它们的近似数。(课件出示)

  986534 58741 31200

  50047 398010 14870

  (2)下面的□里可以填哪些数字?

  32□645≈32万 47□905≈47万

  学生填完后,引导学生说一说是怎么想的。

  2.导入新课。

  师:我们学过求一个整数的近似数。在实际应用小数时,往往没有必要说出它的准确数,只要说出它的近似数就可以了。那么如何求一个小数的近似数呢?今天我们就来学习这一内容。(板书课题)

  设计意图:借助复习求整数的近似数引入新的学习内容,使学生能更好地理解求一个小数的近似数的'方法,由旧知迁移到新知,既激发了学生的求知欲,又为新知的探究做好铺垫。

  ⊙探究新知

  1.课件出示教材例1情境图。

  从图中你获得了哪些数学信息?

  (豆豆的身高是0.984 m)

  2.探究求近似数的方法。

  (1)豆豆的身高是0.984 m。说明已经精确到了毫米,平常不需要说得这么精确,那我们一般怎么描述豆豆的身高呢?(出示课堂活动卡,组织学生讨论交流,然后指名汇报。学生的回答可能有两种情况:①豆豆的身高约是0.98 m;②豆豆的身高约是1 m)

  (2)你是怎样得出豆豆身高的近似数的?

  生1:我用“四舍五入”法把0.984保留两位小数。因为在生活中,表示身高的米数通常是两位小数,也就是精确到厘米。把0.984保留两位小数就要看千分位上的数,千分位上的数不满5,舍去,求得近似数是0.98。

  生2:我用“四舍五入”法把0.984保留整数。保留整数就要看十分位上的数,十分位上的数是9,满5,向前一位进1,求得近似数是1。

  教师小结:求一个小数的近似数与求一个整数的近似数相同,也是根据“四舍五入”法保留一定的位数。

  教师板书: 0.984≈0.98

  ↑

  小于5,舍去

  (3)如果要保留一位小数,应该怎么做呢?(组织学生小组内讨论、交流,然后汇报:0.984保留一位小数就要看百分位上的数,百分位上的数是8,满5,向十分位进1。十分位上本来是9,进1后满10,向个位进1,求得近似数是1.0)

  教师板书:0.984≈1.0

  ↑

  大于5,向前一位进1

小数近似数的教案13

  教学目标:

  1.使学生掌握求一个小数的近似数的方法.

  2.能正确地用“四舍五人法”求近似数.

  3.使学生理解保留小数位数越多,精确程度越高.

  教学重点:

  使学生理解取近似值对结果的精确程度的影响.

  教学难点:

  理解保留小数位数越多,精确程度越高.

  教学方法:

  探究交流法

  教学准备:

  多媒体课件

  课时课型:

  1课时 新授课

  教学过程:

  (一)、创设情境

  1.出示情境图,电子秤上显示的数据和售货员的话,提出疑问怎么会不一样?引出“四舍五入法”

  2.引出近似数,复习整数求近似数。

  (二)探究交流

  1.出示情境图,在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。提出0.984的近似数是多少?小组讨论后指名汇报。

  (根据学生汇报现场操作展示在多媒体PPT中,插入函数能在播放时在方框里输入学生汇报结果,能及时将学生的想法展现在课件上)

  2根据汇报结果,分别具体探讨保留两位小数的近似数,保留一位小数,保留整数后的近似数。并说一说操作的过程。

  3、强调取近似数的要求不同表示方法

  4、小组探讨1与1.0的精确度

  5、引导通过线段图理解保留一位小数是1.0,小数末尾的0,应当保留,不能去掉。

  6、总结:刚才是利用什么方法求0.984的近似数?独立完成想一想后在小组中交流,找不同说原因。

  (三)巩固练习

  1、选择,学生独立完成,指名汇报

  (1)保留( )位小数,表示精确到十分位。

  ①一位 ②两位 ③三位

  (2)如果要求保留三位小数,表示精确到( )位。

  ①分 ②百分 ③千分

  2、求下面小数的近似数

  (1)保留两位小数

  0.256 12.006 1.0987

  (2)精确到十分位

  3.72 0.58 9.0548

  (选两组,整组4人一起在电脑前讨论后,将本组答案用电脑操作展现在课件上放映呈现给大家)

  3、按要求填出表中的近似数

  4、拓展题

  四、全课总结

  1、数学课将结束了,你有哪些收获?在哪方面还需努力?

  2、今天我们学习的.是课本73页的知识,打开课本,认真看一看课本,找出书中你认为需要掌握的知识用笔做个记号,然后大声地朗读出来。

  课后作业: 1.从课后习题中选取;

  2.完成练习册本课时的习题

  板书设计:

  求一个小数的近似数

  0.984≈0.98 0.984≈1.0 0.984≈1

  小于5,舍去 大于5,向前一位进1 大于5,向前一位进1

  表示近似数的时,0不能去掉

  课后反思:

小数近似数的教案14

  教学目的:

  复习用四舍五入法求一个小数的近似数。

  使学生会把较大数改写成用万或亿作单位的小数。

  培养同学们分析问题、解决问题的能力。

  教学重点:

  使学生会把较大数改写成用万或亿作单位的小数。

  教学难点:

  使学生会把较大数改写成用万或亿作单位的小数。

  教学过程:

  一、复习

  用四舍五入法分别求出近似数。

  5.9685:保留两位小数、保留一位小数(末尾的0怎么处理)、保留整数部分。

  二、学习把较大的数改写成用万或亿作单位的数。

  1.以前我们学过把整万、整亿的.数改写成用万或亿作单位的数,现在我们继续学习把较大的数改写成用万或亿作单位的数。

  (1)教学例11:

  20xx年我国生产汽车4443900辆,把这个数改写成以万辆为单位的数。再保留一位小数。

  (2)引导学生分析题目要求,理解改写隐含的意思和解题方法。

  与小数点为之移动建立起联系(除法)[理解改写的结果是怎样得到的]。

  4443900辆=444.39万辆

  444390010000=444.39(为什么除以10000?)

  (3)学生独立完成改写和求近似数。

  (4)交流订正:

  (5)观察:今天所学的哪儿是新知识?(改写的过程和方法)

  2.把61581400台改写成以万台作单位的数就是看这个数里有多少个万,应当怎样想?

  (1)应该怎么办?(要把6158100缩小多少倍?小数点应向哪个方向移动几位?)

  (2)引导学生小结方法,教师说明:为了简便,只在万位后面点上小数点,去掉小数末尾的0,在数的后面加上万台。

  板书:61581400台=6158.14万台 6158140010000=6158.14

  3.练习:

  (1)把356000改写成以万作单位的数。

  让学生完成后说说是怎么做的。

  (2)1999年我国生产水泥573000000吨,把这个数改写成以亿吨作单位的数,再保留一位小数。

  学生独立试做,指名板演,订正时说明改写和省略的方法。

  提醒学生防止将改写与省略和精确混淆。

  4.整理:比较改写与求近似数的区别。

  三、小结

  本节课我们主要学习了哪些内容?

  四、课堂作业:

  完成练习五的第5、6题。

  教学反思:学生很好的掌握了小数改写的方法,能够正确区分改写和近似的区别,本课中要是加强练习量,扩展练习形式。增强学生兴趣上下功夫,课堂气氛可能会好一些的,建议可以尝试着把近似和改写一起讲可能就提高教学效率了。

【小数近似数的教案】相关文章:

09-12

03-20

06-18

05-04

12-06

01-16

07-10

04-06

06-22